'''An example of passive ops. Just using LynxKite to describe the configuration of a complex system.''' from .ops import passive_op_registration, Parameter as P, MULTI_INPUT reg = passive_op_registration('LynxScribe') reg('Scrape documents', params=[P.basic('url', '')]) reg('Conversation logs') reg('Extract graph', inputs=['input']) reg('Compute embeddings', inputs=['input'], params=[P.options('method', ['OpenAI', 'graph', 'Yi-34b']), P.basic('dimensions', 1234)]) reg('Vector DB', inputs=[MULTI_INPUT], params=[P.options('backend', ['FAISS', 'ANN', 'HNSW'])]) reg('Chat UI', outputs=[], inputs=['input']) reg('Chat backend') reg('WhatsApp') reg('PII removal', inputs=['input']) reg('Intent classification', inputs=['input']) reg('System prompt', params=[P.basic('prompt', 'You are a helpful chatbot.')]) reg('LLM', inputs=[MULTI_INPUT], params=[P.options('backend', ['GPT-4', 'Yi-34b', 'Claude 3 Opus', 'Google Gemini'])]) # From Marton's mock-up. yi = 'Yi-34B (triton)' reg('Chat Input', params=[ P.options('load_mode', ['augmented']), P.options('model', [yi]), P.options('embedder', ['GritLM-7b (triton)']), ]) reg('k-NN Intent Classifier', inputs=['qa_embs', 'rag_graph'], params=[ P.options('distance', ['cosine', 'euclidean']), P.basic('max_dist', 0.3), P.basic('k', 3), P.options('voting', ['most common', 'weighted']), ]) reg('Chroma Graph RAG Loader', inputs=[], params=[ P.options('location', ['GCP']), P.collapsed('bucket', ''), P.collapsed('folder', ''), P.options('embedder', ['GritLM-7b (triton)']), ]) reg('Scenario Builder', inputs=['input'], params=[ P.collapsed('scenario', ''), ]) reg('Graph RAG Answer', inputs=['qa_embs', 'intent', 'rag_graph', 'prompt_dict'], params=[ P.options('answer_llm', [yi]), P.basic('faq_dist', 0.12), P.basic('max_dist', 0.25), P.basic('ctx_tokens', 2800), P.options('distance', ['cosine', 'euclidean']), P.collapsed('graph_rag_params', ''), ]) reg('Answer Post Processing', inputs=['qa_embs', 'rag_graph'], params=[ P.options('distance', ['cosine', 'euclidean']), P.basic('min_conf', 0.78), ]) reg('Chat Output', inputs=['input'], outputs=[])