'''For specifying an LLM agent logic flow.''' from . import ops import json import openai import pandas as pd client = openai.OpenAI(base_url="http://localhost:11434/v1") CACHE = {} def chat(*args, **kwargs): key = json.dumps({'args': args, 'kwargs': kwargs}) if key not in CACHE: completion = client.chat.completions.create(*args, **kwargs) CACHE[key] = [c.message.content for c in completion.choices] return CACHE[key] @ops.op("Input") def input(*, filename: str, key: str): return pd.read_csv(filename).rename(columns={key: 'text'}) @ops.op("Create prompt") def create_prompt(input, *, template: str): assert template, 'Please specify the template. Refer to columns using their names in uppercase.' df = input.copy() prompts = [] for i, row in df.iterrows(): p = template for c in df.columns: p = p.replace(c.upper(), str(row[c])) prompts.append(p) df['prompt'] = prompts return df @ops.op("Ask LLM") def ask_llm(input, *, model: str, choices: list = None, max_tokens: int = 100): assert model, 'Please specify the model.' assert 'prompt' in input.columns, 'Please create the prompt first.' df = input.copy() g = {} if choices: g['extra_body'] = { "guided_choice": choices.split() } for i, row in df.iterrows(): [res] = chat( model=model, max_tokens=max_tokens, messages=[ {"role": "user", "content": row['prompt']}, ], **g, ) df.loc[i, 'response'] = res return df @ops.op("View", view="table_view") def view(input): v = { 'dataframes': { 'df': { 'columns': [str(c) for c in input.columns], 'data': input.values.tolist(), }} } return v @ops.input_position(input="right") @ops.output_position(output="left") @ops.op("Loop") def loop(input, *, max_iterations: int = 10): '''Data can flow back here until it becomes empty or reaches the limit.''' return input