darabos commited on
Commit
d988c31
·
1 Parent(s): b2ccd7d

Commit demo files. I always worry about losing them.

Browse files
.gitignore CHANGED
@@ -9,6 +9,3 @@
9
  *.sln
10
  *.sw?
11
  __pycache__
12
-
13
- # LynxKite data directory.
14
- /data
 
9
  *.sln
10
  *.sw?
11
  __pycache__
 
 
 
data/Graph RAG ADDED
The diff for this file is too large to render. See raw diff
 
data/Image processing ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "env": "Pillow",
3
+ "nodes": [
4
+ {
5
+ "id": "Open image 1",
6
+ "type": "basic",
7
+ "data": {
8
+ "title": "Open image",
9
+ "params": {
10
+ "filename": "/Users/danieldarabos/Downloads/mimic-a-fraction.png"
11
+ },
12
+ "display": null,
13
+ "error": null,
14
+ "meta": {
15
+ "name": "Open image",
16
+ "params": {
17
+ "filename": {
18
+ "name": "filename",
19
+ "default": null,
20
+ "type": {
21
+ "type": "<class 'str'>"
22
+ }
23
+ }
24
+ },
25
+ "inputs": {},
26
+ "outputs": {
27
+ "output": {
28
+ "name": "output",
29
+ "type": {
30
+ "type": "None"
31
+ },
32
+ "position": "right"
33
+ }
34
+ },
35
+ "type": "basic",
36
+ "sub_nodes": null
37
+ }
38
+ },
39
+ "position": {
40
+ "x": 19.215964588549014,
41
+ "y": 205.21642829186527
42
+ },
43
+ "parentId": null
44
+ },
45
+ {
46
+ "id": "View image 1",
47
+ "type": "image",
48
+ "data": {
49
+ "title": "View image",
50
+ "params": {},
51
+ "display": "",
52
+ "error": null,
53
+ "meta": {
54
+ "name": "View image",
55
+ "params": {},
56
+ "inputs": {
57
+ "image": {
58
+ "name": "image",
59
+ "type": {
60
+ "type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
61
+ },
62
+ "position": "left"
63
+ }
64
+ },
65
+ "outputs": {},
66
+ "type": "image",
67
+ "sub_nodes": null
68
+ }
69
+ },
70
+ "position": {
71
+ "x": 371.2152385614552,
72
+ "y": -243.68185336918702
73
+ },
74
+ "parentId": null
75
+ },
76
+ {
77
+ "id": "Flip verically 1",
78
+ "type": "basic",
79
+ "data": {
80
+ "title": "Flip verically",
81
+ "params": {},
82
+ "display": null,
83
+ "error": null,
84
+ "meta": {
85
+ "name": "Flip verically",
86
+ "params": {},
87
+ "inputs": {
88
+ "image": {
89
+ "name": "image",
90
+ "type": {
91
+ "type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
92
+ },
93
+ "position": "left"
94
+ }
95
+ },
96
+ "outputs": {
97
+ "output": {
98
+ "name": "output",
99
+ "type": {
100
+ "type": "None"
101
+ },
102
+ "position": "right"
103
+ }
104
+ },
105
+ "type": "basic",
106
+ "sub_nodes": null
107
+ }
108
+ },
109
+ "position": {
110
+ "x": 258.90660520478934,
111
+ "y": 582.9425419285425
112
+ },
113
+ "parentId": null
114
+ },
115
+ {
116
+ "id": "View image 2",
117
+ "type": "image",
118
+ "data": {
119
+ "title": "View image",
120
+ "params": {},
121
+ "display": "",
122
+ "error": null,
123
+ "meta": {
124
+ "name": "View image",
125
+ "params": {},
126
+ "inputs": {
127
+ "image": {
128
+ "name": "image",
129
+ "type": {
130
+ "type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
131
+ },
132
+ "position": "left"
133
+ }
134
+ },
135
+ "outputs": {},
136
+ "type": "image",
137
+ "sub_nodes": null
138
+ }
139
+ },
140
+ "position": {
141
+ "x": 1027.1387925400982,
142
+ "y": 251.36630333493974
143
+ },
144
+ "parentId": null
145
+ },
146
+ {
147
+ "id": "To grayscale 1",
148
+ "type": "basic",
149
+ "data": {
150
+ "title": "To grayscale",
151
+ "params": {},
152
+ "display": null,
153
+ "error": null,
154
+ "meta": {
155
+ "name": "To grayscale",
156
+ "params": {},
157
+ "inputs": {
158
+ "image": {
159
+ "name": "image",
160
+ "type": {
161
+ "type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
162
+ },
163
+ "position": "left"
164
+ }
165
+ },
166
+ "outputs": {
167
+ "output": {
168
+ "name": "output",
169
+ "type": {
170
+ "type": "None"
171
+ },
172
+ "position": "right"
173
+ }
174
+ },
175
+ "type": "basic",
176
+ "sub_nodes": null
177
+ }
178
+ },
179
+ "position": {
180
+ "x": 826.1911193192234,
181
+ "y": 579.1542134884979
182
+ },
183
+ "parentId": null
184
+ },
185
+ {
186
+ "id": "Blur 1",
187
+ "type": "basic",
188
+ "data": {
189
+ "title": "Blur",
190
+ "params": {
191
+ "radius": "5"
192
+ },
193
+ "display": null,
194
+ "error": null,
195
+ "meta": {
196
+ "name": "Blur",
197
+ "params": {
198
+ "radius": {
199
+ "name": "radius",
200
+ "default": null,
201
+ "type": {
202
+ "type": "<class 'float'>"
203
+ }
204
+ }
205
+ },
206
+ "inputs": {
207
+ "image": {
208
+ "name": "image",
209
+ "type": {
210
+ "type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
211
+ },
212
+ "position": "left"
213
+ }
214
+ },
215
+ "outputs": {
216
+ "output": {
217
+ "name": "output",
218
+ "type": {
219
+ "type": "None"
220
+ },
221
+ "position": "right"
222
+ }
223
+ },
224
+ "type": "basic",
225
+ "sub_nodes": null
226
+ }
227
+ },
228
+ "position": {
229
+ "x": 505.15961556359304,
230
+ "y": 539.8477981917164
231
+ },
232
+ "parentId": null
233
+ }
234
+ ],
235
+ "edges": [
236
+ {
237
+ "id": "xy-edge__Open image 1output-View image 1image",
238
+ "source": "Open image 1",
239
+ "target": "View image 1",
240
+ "sourceHandle": "output",
241
+ "targetHandle": "image"
242
+ },
243
+ {
244
+ "id": "xy-edge__Open image 1output-Flip verically 1image",
245
+ "source": "Open image 1",
246
+ "target": "Flip verically 1",
247
+ "sourceHandle": "output",
248
+ "targetHandle": "image"
249
+ },
250
+ {
251
+ "id": "xy-edge__To grayscale 1output-View image 2image",
252
+ "source": "To grayscale 1",
253
+ "target": "View image 2",
254
+ "sourceHandle": "output",
255
+ "targetHandle": "image"
256
+ },
257
+ {
258
+ "id": "xy-edge__Flip verically 1output-Blur 1image",
259
+ "source": "Flip verically 1",
260
+ "target": "Blur 1",
261
+ "sourceHandle": "output",
262
+ "targetHandle": "image"
263
+ },
264
+ {
265
+ "id": "xy-edge__Blur 1output-To grayscale 1image",
266
+ "source": "Blur 1",
267
+ "target": "To grayscale 1",
268
+ "sourceHandle": "output",
269
+ "targetHandle": "image"
270
+ }
271
+ ]
272
+ }
data/NetworkX demo ADDED
The diff for this file is too large to render. See raw diff
 
data/PyTorch demo ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "env": "PyTorch model",
3
+ "nodes": [
4
+ {
5
+ "id": "Input: features 1",
6
+ "type": "basic",
7
+ "data": {
8
+ "title": "Input: features",
9
+ "params": {},
10
+ "display": null,
11
+ "error": null,
12
+ "meta": {
13
+ "name": "Input: features",
14
+ "params": {},
15
+ "inputs": {},
16
+ "outputs": {
17
+ "x": {
18
+ "name": "x",
19
+ "type": {
20
+ "type": "tensor"
21
+ },
22
+ "position": "top"
23
+ }
24
+ },
25
+ "type": "basic",
26
+ "sub_nodes": null
27
+ }
28
+ },
29
+ "position": {
30
+ "x": -108.60604658638658,
31
+ "y": 63.96065124378427
32
+ },
33
+ "parentId": null
34
+ },
35
+ {
36
+ "id": "Input: graph edges 1",
37
+ "type": "basic",
38
+ "data": {
39
+ "title": "Input: graph edges",
40
+ "params": {},
41
+ "display": null,
42
+ "error": null,
43
+ "meta": {
44
+ "name": "Input: graph edges",
45
+ "params": {},
46
+ "inputs": {},
47
+ "outputs": {
48
+ "edges": {
49
+ "name": "edges",
50
+ "type": {
51
+ "type": "tensor"
52
+ },
53
+ "position": "top"
54
+ }
55
+ },
56
+ "type": "basic",
57
+ "sub_nodes": null
58
+ }
59
+ },
60
+ "position": {
61
+ "x": 180.7373888617958,
62
+ "y": 58.54904654355781
63
+ },
64
+ "parentId": null
65
+ },
66
+ {
67
+ "id": "Linear 1",
68
+ "type": "basic",
69
+ "data": {
70
+ "title": "Linear",
71
+ "params": {
72
+ "output_dim": "same"
73
+ },
74
+ "display": null,
75
+ "error": null,
76
+ "meta": {
77
+ "name": "Linear",
78
+ "params": {
79
+ "output_dim": {
80
+ "name": "output_dim",
81
+ "default": "same",
82
+ "type": {
83
+ "type": "<class 'str'>"
84
+ }
85
+ }
86
+ },
87
+ "inputs": {
88
+ "x": {
89
+ "name": "x",
90
+ "type": {
91
+ "type": "tensor"
92
+ },
93
+ "position": "bottom"
94
+ }
95
+ },
96
+ "outputs": {
97
+ "x": {
98
+ "name": "x",
99
+ "type": {
100
+ "type": "tensor"
101
+ },
102
+ "position": "top"
103
+ }
104
+ },
105
+ "type": "basic",
106
+ "sub_nodes": null
107
+ }
108
+ },
109
+ "position": {
110
+ "x": 56.938816909128036,
111
+ "y": -573.5634543506885
112
+ },
113
+ "parentId": null
114
+ },
115
+ {
116
+ "id": "Activation 1",
117
+ "type": "basic",
118
+ "data": {
119
+ "title": "Activation",
120
+ "params": {
121
+ "type": "ReLU"
122
+ },
123
+ "display": null,
124
+ "error": null,
125
+ "meta": {
126
+ "name": "Activation",
127
+ "params": {
128
+ "type": {
129
+ "name": "type",
130
+ "default": 1,
131
+ "type": {
132
+ "enum": [
133
+ "ReLU",
134
+ "LeakyReLU",
135
+ "Tanh",
136
+ "Mish"
137
+ ]
138
+ }
139
+ }
140
+ },
141
+ "inputs": {
142
+ "x": {
143
+ "name": "x",
144
+ "type": {
145
+ "type": "tensor"
146
+ },
147
+ "position": "bottom"
148
+ }
149
+ },
150
+ "outputs": {
151
+ "x": {
152
+ "name": "x",
153
+ "type": {
154
+ "type": "tensor"
155
+ },
156
+ "position": "top"
157
+ }
158
+ },
159
+ "type": "basic",
160
+ "sub_nodes": null
161
+ }
162
+ },
163
+ "position": {
164
+ "x": 84.15324804216073,
165
+ "y": -729.2300004316357
166
+ },
167
+ "parentId": null
168
+ },
169
+ {
170
+ "id": "Dropout 1",
171
+ "type": "basic",
172
+ "data": {
173
+ "title": "Dropout",
174
+ "params": {
175
+ "p": 0.5
176
+ },
177
+ "display": null,
178
+ "error": null,
179
+ "meta": {
180
+ "name": "Dropout",
181
+ "params": {
182
+ "p": {
183
+ "name": "p",
184
+ "default": 0.5,
185
+ "type": {
186
+ "type": "<class 'float'>"
187
+ }
188
+ }
189
+ },
190
+ "inputs": {
191
+ "x": {
192
+ "name": "x",
193
+ "type": {
194
+ "type": "tensor"
195
+ },
196
+ "position": "bottom"
197
+ }
198
+ },
199
+ "outputs": {
200
+ "x": {
201
+ "name": "x",
202
+ "type": {
203
+ "type": "tensor"
204
+ },
205
+ "position": "top"
206
+ }
207
+ },
208
+ "type": "basic",
209
+ "sub_nodes": null
210
+ }
211
+ },
212
+ "position": {
213
+ "x": 56.938816909128036,
214
+ "y": -889.4846386414522
215
+ },
216
+ "parentId": null
217
+ },
218
+ {
219
+ "id": "Repeat 1",
220
+ "type": "area",
221
+ "data": {
222
+ "title": "Repeat",
223
+ "params": {
224
+ "times": "3"
225
+ },
226
+ "display": null,
227
+ "error": null,
228
+ "meta": {
229
+ "name": "Repeat",
230
+ "params": {
231
+ "times": {
232
+ "name": "times",
233
+ "default": 1,
234
+ "type": {
235
+ "type": "<class 'int'>"
236
+ }
237
+ }
238
+ },
239
+ "inputs": {},
240
+ "outputs": {},
241
+ "type": "area",
242
+ "sub_nodes": null
243
+ }
244
+ },
245
+ "position": {
246
+ "x": -48.6249442834993,
247
+ "y": -970.0583599108166
248
+ },
249
+ "parentId": null,
250
+ "width": 400,
251
+ "height": 600
252
+ },
253
+ {
254
+ "id": "Graph conv 1",
255
+ "type": "basic",
256
+ "data": {
257
+ "title": "Graph conv",
258
+ "params": {
259
+ "type": "SAGEConv"
260
+ },
261
+ "display": null,
262
+ "error": null,
263
+ "meta": {
264
+ "name": "Graph conv",
265
+ "params": {
266
+ "type": {
267
+ "name": "type",
268
+ "default": 1,
269
+ "type": {
270
+ "enum": [
271
+ "GCNConv",
272
+ "GATConv",
273
+ "GATv2Conv",
274
+ "SAGEConv"
275
+ ]
276
+ }
277
+ }
278
+ },
279
+ "inputs": {
280
+ "x": {
281
+ "name": "x",
282
+ "type": {
283
+ "type": "tensor"
284
+ },
285
+ "position": "bottom"
286
+ },
287
+ "edges": {
288
+ "name": "edges",
289
+ "type": {
290
+ "type": "tensor"
291
+ },
292
+ "position": "bottom"
293
+ }
294
+ },
295
+ "outputs": {
296
+ "x": {
297
+ "name": "x",
298
+ "type": {
299
+ "type": "tensor"
300
+ },
301
+ "position": "top"
302
+ }
303
+ },
304
+ "type": "basic",
305
+ "sub_nodes": null
306
+ }
307
+ },
308
+ "position": {
309
+ "x": 64.08886242755246,
310
+ "y": -269.43023573181557
311
+ },
312
+ "parentId": null
313
+ },
314
+ {
315
+ "id": "Repeat 2",
316
+ "type": "area",
317
+ "data": {
318
+ "title": "Repeat",
319
+ "params": {
320
+ "times": "5"
321
+ },
322
+ "display": null,
323
+ "error": null,
324
+ "meta": {
325
+ "name": "Repeat",
326
+ "params": {
327
+ "times": {
328
+ "name": "times",
329
+ "default": 1,
330
+ "type": {
331
+ "type": "<class 'int'>"
332
+ }
333
+ }
334
+ },
335
+ "inputs": {},
336
+ "outputs": {},
337
+ "type": "area",
338
+ "sub_nodes": null
339
+ }
340
+ },
341
+ "position": {
342
+ "x": -46.21033706832179,
343
+ "y": -326.2712248181098
344
+ },
345
+ "parentId": null,
346
+ "width": 400,
347
+ "height": 200
348
+ },
349
+ {
350
+ "id": "Supervised loss 1",
351
+ "type": "basic",
352
+ "data": {
353
+ "title": "Supervised loss",
354
+ "params": {},
355
+ "display": null,
356
+ "error": null,
357
+ "meta": {
358
+ "name": "Supervised loss",
359
+ "params": {},
360
+ "inputs": {
361
+ "x": {
362
+ "name": "x",
363
+ "type": {
364
+ "type": "tensor"
365
+ },
366
+ "position": "bottom"
367
+ },
368
+ "y": {
369
+ "name": "y",
370
+ "type": {
371
+ "type": "tensor"
372
+ },
373
+ "position": "bottom"
374
+ }
375
+ },
376
+ "outputs": {
377
+ "loss": {
378
+ "name": "loss",
379
+ "type": {
380
+ "type": "tensor"
381
+ },
382
+ "position": "top"
383
+ }
384
+ },
385
+ "type": "basic",
386
+ "sub_nodes": null
387
+ }
388
+ },
389
+ "position": {
390
+ "x": 110.53693593362718,
391
+ "y": -1123.9976567905628
392
+ },
393
+ "parentId": null
394
+ },
395
+ {
396
+ "id": "Input: label 1",
397
+ "type": "basic",
398
+ "data": {
399
+ "title": "Input: label",
400
+ "params": {},
401
+ "display": null,
402
+ "error": null,
403
+ "meta": {
404
+ "name": "Input: label",
405
+ "params": {},
406
+ "inputs": {},
407
+ "outputs": {
408
+ "y": {
409
+ "name": "y",
410
+ "type": {
411
+ "type": "tensor"
412
+ },
413
+ "position": "top"
414
+ }
415
+ },
416
+ "type": "basic",
417
+ "sub_nodes": null
418
+ }
419
+ },
420
+ "position": {
421
+ "x": 666.110498676668,
422
+ "y": -898.6721561114967
423
+ },
424
+ "parentId": null
425
+ },
426
+ {
427
+ "id": "Optimizer 1",
428
+ "type": "basic",
429
+ "data": {
430
+ "title": "Optimizer",
431
+ "params": {
432
+ "type": "AdamW",
433
+ "lr": 0.001
434
+ },
435
+ "display": null,
436
+ "error": null,
437
+ "meta": {
438
+ "name": "Optimizer",
439
+ "params": {
440
+ "type": {
441
+ "name": "type",
442
+ "default": 1,
443
+ "type": {
444
+ "enum": [
445
+ "AdamW",
446
+ "Adafactor",
447
+ "Adagrad",
448
+ "SGD",
449
+ "Lion",
450
+ "Paged AdamW",
451
+ "Galore AdamW"
452
+ ]
453
+ }
454
+ },
455
+ "lr": {
456
+ "name": "lr",
457
+ "default": 0.001,
458
+ "type": {
459
+ "type": "<class 'float'>"
460
+ }
461
+ }
462
+ },
463
+ "inputs": {
464
+ "loss": {
465
+ "name": "loss",
466
+ "type": {
467
+ "type": "tensor"
468
+ },
469
+ "position": "bottom"
470
+ }
471
+ },
472
+ "outputs": {},
473
+ "type": "basic",
474
+ "sub_nodes": null
475
+ }
476
+ },
477
+ "position": {
478
+ "x": 165.28398260528976,
479
+ "y": -1338.6254108128633
480
+ },
481
+ "parentId": null
482
+ }
483
+ ],
484
+ "edges": [
485
+ {
486
+ "id": "xy-edge__Linear 1x-Activation 1x",
487
+ "source": "Linear 1",
488
+ "target": "Activation 1",
489
+ "sourceHandle": "x",
490
+ "targetHandle": "x"
491
+ },
492
+ {
493
+ "id": "xy-edge__Activation 1x-Dropout 1x",
494
+ "source": "Activation 1",
495
+ "target": "Dropout 1",
496
+ "sourceHandle": "x",
497
+ "targetHandle": "x"
498
+ },
499
+ {
500
+ "id": "xy-edge__Input: features 1x-Graph conv 1x",
501
+ "source": "Input: features 1",
502
+ "target": "Graph conv 1",
503
+ "sourceHandle": "x",
504
+ "targetHandle": "x"
505
+ },
506
+ {
507
+ "id": "xy-edge__Input: graph edges 1edges-Graph conv 1edges",
508
+ "source": "Input: graph edges 1",
509
+ "target": "Graph conv 1",
510
+ "sourceHandle": "edges",
511
+ "targetHandle": "edges"
512
+ },
513
+ {
514
+ "id": "xy-edge__Graph conv 1x-Linear 1x",
515
+ "source": "Graph conv 1",
516
+ "target": "Linear 1",
517
+ "sourceHandle": "x",
518
+ "targetHandle": "x"
519
+ },
520
+ {
521
+ "id": "xy-edge__Input: label 1y-Supervised loss 1y",
522
+ "source": "Input: label 1",
523
+ "target": "Supervised loss 1",
524
+ "sourceHandle": "y",
525
+ "targetHandle": "y"
526
+ },
527
+ {
528
+ "id": "xy-edge__Dropout 1x-Supervised loss 1x",
529
+ "source": "Dropout 1",
530
+ "target": "Supervised loss 1",
531
+ "sourceHandle": "x",
532
+ "targetHandle": "x"
533
+ },
534
+ {
535
+ "id": "xy-edge__Supervised loss 1loss-Optimizer 1loss",
536
+ "source": "Supervised loss 1",
537
+ "target": "Optimizer 1",
538
+ "sourceHandle": "loss",
539
+ "targetHandle": "loss"
540
+ }
541
+ ]
542
+ }
data/RAG chatbot app ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "env": "LynxScribe",
3
+ "nodes": [
4
+ {
5
+ "id": "Chat Input 1",
6
+ "type": "basic",
7
+ "data": {
8
+ "title": "Chat Input",
9
+ "params": {
10
+ "load_mode": "augmented",
11
+ "model": "Yi-34B (triton)",
12
+ "embedder": "GritLM-7b (triton)"
13
+ },
14
+ "display": null,
15
+ "error": null,
16
+ "inputs": {},
17
+ "outputs": {
18
+ "output": "<class 'server.ops.Bundle'>"
19
+ },
20
+ "meta": {
21
+ "name": "Chat Input",
22
+ "params": {
23
+ "load_mode": {
24
+ "name": "load_mode",
25
+ "default": 1,
26
+ "type": {
27
+ "enum": [
28
+ "augmented"
29
+ ]
30
+ }
31
+ },
32
+ "model": {
33
+ "name": "model",
34
+ "default": 1,
35
+ "type": {
36
+ "enum": [
37
+ "Yi-34B (triton)"
38
+ ]
39
+ }
40
+ },
41
+ "embedder": {
42
+ "name": "embedder",
43
+ "default": 1,
44
+ "type": {
45
+ "enum": [
46
+ "GritLM-7b (triton)"
47
+ ]
48
+ }
49
+ }
50
+ },
51
+ "inputs": {},
52
+ "outputs": {
53
+ "output": {
54
+ "name": "output",
55
+ "type": {
56
+ "type": "None"
57
+ },
58
+ "position": "right"
59
+ }
60
+ },
61
+ "type": "basic",
62
+ "sub_nodes": null
63
+ }
64
+ },
65
+ "position": {
66
+ "x": 195.66666666666669,
67
+ "y": 163.66666666666666
68
+ },
69
+ "parentId": null,
70
+ "parentNode": null
71
+ },
72
+ {
73
+ "id": "Chroma Graph RAG Loader 1",
74
+ "type": "basic",
75
+ "data": {
76
+ "title": "Chroma Graph RAG Loader",
77
+ "params": {
78
+ "location": "GCP",
79
+ "bucket": "",
80
+ "folder": "",
81
+ "embedder": "GritLM-7b (triton)"
82
+ },
83
+ "display": null,
84
+ "error": null,
85
+ "inputs": {},
86
+ "outputs": {
87
+ "output": "<class 'server.ops.Bundle'>"
88
+ },
89
+ "meta": {
90
+ "name": "Chroma Graph RAG Loader",
91
+ "params": {
92
+ "location": {
93
+ "name": "location",
94
+ "default": 1,
95
+ "type": {
96
+ "enum": [
97
+ "GCP"
98
+ ]
99
+ }
100
+ },
101
+ "bucket": {
102
+ "name": "bucket",
103
+ "default": "",
104
+ "type": {
105
+ "format": "collapsed"
106
+ }
107
+ },
108
+ "folder": {
109
+ "name": "folder",
110
+ "default": "",
111
+ "type": {
112
+ "format": "collapsed"
113
+ }
114
+ },
115
+ "embedder": {
116
+ "name": "embedder",
117
+ "default": 1,
118
+ "type": {
119
+ "enum": [
120
+ "GritLM-7b (triton)"
121
+ ]
122
+ }
123
+ }
124
+ },
125
+ "inputs": {},
126
+ "outputs": {
127
+ "output": {
128
+ "name": "output",
129
+ "type": {
130
+ "type": "None"
131
+ },
132
+ "position": "right"
133
+ }
134
+ },
135
+ "type": "basic",
136
+ "sub_nodes": null
137
+ }
138
+ },
139
+ "position": {
140
+ "x": 195.60875221397816,
141
+ "y": 395.94296449008243
142
+ },
143
+ "parentId": null,
144
+ "parentNode": null
145
+ },
146
+ {
147
+ "id": "k-NN Intent Classifier 1",
148
+ "type": "basic",
149
+ "data": {
150
+ "title": "k-NN Intent Classifier",
151
+ "params": {
152
+ "distance": "cosine",
153
+ "max_dist": 0.3,
154
+ "k": "10",
155
+ "voting": "weighted"
156
+ },
157
+ "display": null,
158
+ "error": null,
159
+ "inputs": {
160
+ "qa_embs": "None",
161
+ "rag_graph": "None"
162
+ },
163
+ "outputs": {
164
+ "output": "<class 'server.ops.Bundle'>"
165
+ },
166
+ "meta": {
167
+ "name": "k-NN Intent Classifier",
168
+ "params": {
169
+ "distance": {
170
+ "name": "distance",
171
+ "default": 1,
172
+ "type": {
173
+ "enum": [
174
+ "cosine",
175
+ "euclidean"
176
+ ]
177
+ }
178
+ },
179
+ "max_dist": {
180
+ "name": "max_dist",
181
+ "default": 0.3,
182
+ "type": {
183
+ "type": "<class 'float'>"
184
+ }
185
+ },
186
+ "k": {
187
+ "name": "k",
188
+ "default": 3,
189
+ "type": {
190
+ "type": "<class 'int'>"
191
+ }
192
+ },
193
+ "voting": {
194
+ "name": "voting",
195
+ "default": 1,
196
+ "type": {
197
+ "enum": [
198
+ "most common",
199
+ "weighted"
200
+ ]
201
+ }
202
+ }
203
+ },
204
+ "inputs": {
205
+ "qa_embs": {
206
+ "name": "qa_embs",
207
+ "type": {
208
+ "type": "None"
209
+ },
210
+ "position": "left"
211
+ },
212
+ "rag_graph": {
213
+ "name": "rag_graph",
214
+ "type": {
215
+ "type": "None"
216
+ },
217
+ "position": "left"
218
+ }
219
+ },
220
+ "outputs": {
221
+ "output": {
222
+ "name": "output",
223
+ "type": {
224
+ "type": "None"
225
+ },
226
+ "position": "right"
227
+ }
228
+ },
229
+ "type": "basic",
230
+ "sub_nodes": null
231
+ },
232
+ "collapsed": false
233
+ },
234
+ "position": {
235
+ "x": 563.2980104689954,
236
+ "y": 133.15405056058248
237
+ },
238
+ "parentId": null,
239
+ "parentNode": null
240
+ },
241
+ {
242
+ "id": "Graph RAG Answer 1",
243
+ "type": "basic",
244
+ "data": {
245
+ "title": "Graph RAG Answer",
246
+ "params": {
247
+ "answer_llm": "Yi-34B (triton)",
248
+ "faq_dist": 0.12,
249
+ "max_dist": 0.25,
250
+ "ctx_tokens": 2800,
251
+ "distance": "cosine",
252
+ "graph_rag_params": ""
253
+ },
254
+ "display": null,
255
+ "error": null,
256
+ "inputs": {
257
+ "qa_embs": "None",
258
+ "intent": "None",
259
+ "rag_graph": "None",
260
+ "prompt_dict": "None"
261
+ },
262
+ "outputs": {
263
+ "output": "<class 'server.ops.Bundle'>"
264
+ },
265
+ "meta": {
266
+ "name": "Graph RAG Answer",
267
+ "params": {
268
+ "answer_llm": {
269
+ "name": "answer_llm",
270
+ "default": 1,
271
+ "type": {
272
+ "enum": [
273
+ "Yi-34B (triton)"
274
+ ]
275
+ }
276
+ },
277
+ "faq_dist": {
278
+ "name": "faq_dist",
279
+ "default": 0.12,
280
+ "type": {
281
+ "type": "<class 'float'>"
282
+ }
283
+ },
284
+ "max_dist": {
285
+ "name": "max_dist",
286
+ "default": 0.25,
287
+ "type": {
288
+ "type": "<class 'float'>"
289
+ }
290
+ },
291
+ "ctx_tokens": {
292
+ "name": "ctx_tokens",
293
+ "default": 2800,
294
+ "type": {
295
+ "type": "<class 'int'>"
296
+ }
297
+ },
298
+ "distance": {
299
+ "name": "distance",
300
+ "default": 1,
301
+ "type": {
302
+ "enum": [
303
+ "cosine",
304
+ "euclidean"
305
+ ]
306
+ }
307
+ },
308
+ "graph_rag_params": {
309
+ "name": "graph_rag_params",
310
+ "default": "",
311
+ "type": {
312
+ "format": "collapsed"
313
+ }
314
+ }
315
+ },
316
+ "inputs": {
317
+ "qa_embs": {
318
+ "name": "qa_embs",
319
+ "type": {
320
+ "type": "None"
321
+ },
322
+ "position": "left"
323
+ },
324
+ "intent": {
325
+ "name": "intent",
326
+ "type": {
327
+ "type": "None"
328
+ },
329
+ "position": "left"
330
+ },
331
+ "rag_graph": {
332
+ "name": "rag_graph",
333
+ "type": {
334
+ "type": "None"
335
+ },
336
+ "position": "left"
337
+ },
338
+ "prompt_dict": {
339
+ "name": "prompt_dict",
340
+ "type": {
341
+ "type": "None"
342
+ },
343
+ "position": "left"
344
+ }
345
+ },
346
+ "outputs": {
347
+ "output": {
348
+ "name": "output",
349
+ "type": {
350
+ "type": "None"
351
+ },
352
+ "position": "right"
353
+ }
354
+ },
355
+ "type": "basic",
356
+ "sub_nodes": null
357
+ },
358
+ "collapsed": false
359
+ },
360
+ "position": {
361
+ "x": 954.7861764338505,
362
+ "y": 158.59348288997435
363
+ },
364
+ "parentId": null,
365
+ "parentNode": null
366
+ },
367
+ {
368
+ "id": "Scenario Builder 1",
369
+ "type": "basic",
370
+ "data": {
371
+ "title": "Scenario Builder",
372
+ "params": {
373
+ "scenario": ""
374
+ },
375
+ "display": null,
376
+ "error": null,
377
+ "inputs": {
378
+ "input": "<class 'server.ops.Bundle'>"
379
+ },
380
+ "outputs": {
381
+ "output": "<class 'server.ops.Bundle'>"
382
+ },
383
+ "meta": {
384
+ "name": "Scenario Builder",
385
+ "params": {
386
+ "scenario": {
387
+ "name": "scenario",
388
+ "default": "",
389
+ "type": {
390
+ "format": "collapsed"
391
+ }
392
+ }
393
+ },
394
+ "inputs": {
395
+ "input": {
396
+ "name": "input",
397
+ "type": {
398
+ "type": "None"
399
+ },
400
+ "position": "left"
401
+ }
402
+ },
403
+ "outputs": {
404
+ "output": {
405
+ "name": "output",
406
+ "type": {
407
+ "type": "None"
408
+ },
409
+ "position": "right"
410
+ }
411
+ },
412
+ "type": "basic",
413
+ "sub_nodes": null
414
+ }
415
+ },
416
+ "position": {
417
+ "x": 564.4460318313352,
418
+ "y": 542.19038386186
419
+ },
420
+ "parentId": null,
421
+ "parentNode": null
422
+ },
423
+ {
424
+ "id": "Answer Post Processing 1",
425
+ "type": "basic",
426
+ "data": {
427
+ "title": "Answer Post Processing",
428
+ "params": {
429
+ "distance": "cosine",
430
+ "min_conf": 0.78
431
+ },
432
+ "display": null,
433
+ "error": null,
434
+ "inputs": {
435
+ "qa_embs": "None",
436
+ "rag_graph": "None"
437
+ },
438
+ "outputs": {
439
+ "output": "<class 'server.ops.Bundle'>"
440
+ },
441
+ "meta": {
442
+ "name": "Answer Post Processing",
443
+ "params": {
444
+ "distance": {
445
+ "name": "distance",
446
+ "default": 1,
447
+ "type": {
448
+ "enum": [
449
+ "cosine",
450
+ "euclidean"
451
+ ]
452
+ }
453
+ },
454
+ "min_conf": {
455
+ "name": "min_conf",
456
+ "default": 0.78,
457
+ "type": {
458
+ "type": "<class 'float'>"
459
+ }
460
+ }
461
+ },
462
+ "inputs": {
463
+ "qa_embs": {
464
+ "name": "qa_embs",
465
+ "type": {
466
+ "type": "None"
467
+ },
468
+ "position": "left"
469
+ },
470
+ "rag_graph": {
471
+ "name": "rag_graph",
472
+ "type": {
473
+ "type": "None"
474
+ },
475
+ "position": "left"
476
+ }
477
+ },
478
+ "outputs": {
479
+ "output": {
480
+ "name": "output",
481
+ "type": {
482
+ "type": "None"
483
+ },
484
+ "position": "right"
485
+ }
486
+ },
487
+ "type": "basic",
488
+ "sub_nodes": null
489
+ }
490
+ },
491
+ "position": {
492
+ "x": 1278.9987187264371,
493
+ "y": 203.10622200721383
494
+ },
495
+ "parentId": null,
496
+ "parentNode": null
497
+ },
498
+ {
499
+ "id": "Chat Output 1",
500
+ "type": "basic",
501
+ "data": {
502
+ "title": "Chat Output",
503
+ "params": {},
504
+ "display": null,
505
+ "error": null,
506
+ "inputs": {
507
+ "input": "<class 'server.ops.Bundle'>"
508
+ },
509
+ "outputs": {},
510
+ "meta": {
511
+ "name": "Chat Output",
512
+ "params": {},
513
+ "inputs": {
514
+ "input": {
515
+ "name": "input",
516
+ "type": {
517
+ "type": "None"
518
+ },
519
+ "position": "left"
520
+ }
521
+ },
522
+ "outputs": {},
523
+ "type": "basic",
524
+ "sub_nodes": null
525
+ },
526
+ "collapsed": true
527
+ },
528
+ "position": {
529
+ "x": 1567.1754450730762,
530
+ "y": 249.55429591996437
531
+ },
532
+ "parentId": null,
533
+ "parentNode": null
534
+ }
535
+ ],
536
+ "edges": [
537
+ {
538
+ "id": "xy-edge__Answer Post Processing 1output-Chat Output 1input",
539
+ "source": "Answer Post Processing 1",
540
+ "target": "Chat Output 1",
541
+ "sourceHandle": "output",
542
+ "targetHandle": "input"
543
+ },
544
+ {
545
+ "id": "xy-edge__Chat Input 1output-Graph RAG Answer 1qa_embs",
546
+ "source": "Chat Input 1",
547
+ "target": "Graph RAG Answer 1",
548
+ "sourceHandle": "output",
549
+ "targetHandle": "qa_embs"
550
+ },
551
+ {
552
+ "id": "xy-edge__Chat Input 1output-k-NN Intent Classifier 1qa_embs",
553
+ "source": "Chat Input 1",
554
+ "target": "k-NN Intent Classifier 1",
555
+ "sourceHandle": "output",
556
+ "targetHandle": "qa_embs"
557
+ },
558
+ {
559
+ "id": "xy-edge__Chroma Graph RAG Loader 1output-k-NN Intent Classifier 1rag_graph",
560
+ "source": "Chroma Graph RAG Loader 1",
561
+ "target": "k-NN Intent Classifier 1",
562
+ "sourceHandle": "output",
563
+ "targetHandle": "rag_graph"
564
+ },
565
+ {
566
+ "id": "xy-edge__k-NN Intent Classifier 1output-Graph RAG Answer 1intent",
567
+ "source": "k-NN Intent Classifier 1",
568
+ "target": "Graph RAG Answer 1",
569
+ "sourceHandle": "output",
570
+ "targetHandle": "intent"
571
+ },
572
+ {
573
+ "id": "xy-edge__Chroma Graph RAG Loader 1output-Scenario Builder 1input",
574
+ "source": "Chroma Graph RAG Loader 1",
575
+ "target": "Scenario Builder 1",
576
+ "sourceHandle": "output",
577
+ "targetHandle": "input"
578
+ },
579
+ {
580
+ "id": "xy-edge__Scenario Builder 1output-Graph RAG Answer 1prompt_dict",
581
+ "source": "Scenario Builder 1",
582
+ "target": "Graph RAG Answer 1",
583
+ "sourceHandle": "output",
584
+ "targetHandle": "prompt_dict"
585
+ },
586
+ {
587
+ "id": "xy-edge__Graph RAG Answer 1output-Answer Post Processing 1qa_embs",
588
+ "source": "Graph RAG Answer 1",
589
+ "target": "Answer Post Processing 1",
590
+ "sourceHandle": "output",
591
+ "targetHandle": "qa_embs"
592
+ },
593
+ {
594
+ "id": "xy-edge__Chroma Graph RAG Loader 1output-Answer Post Processing 1rag_graph",
595
+ "source": "Chroma Graph RAG Loader 1",
596
+ "target": "Answer Post Processing 1",
597
+ "sourceHandle": "output",
598
+ "targetHandle": "rag_graph"
599
+ },
600
+ {
601
+ "id": "xy-edge__Chroma Graph RAG Loader 1output-Graph RAG Answer 1rag_graph",
602
+ "source": "Chroma Graph RAG Loader 1",
603
+ "target": "Graph RAG Answer 1",
604
+ "sourceHandle": "output",
605
+ "targetHandle": "rag_graph"
606
+ }
607
+ ]
608
+ }