Spaces:
Running
Running
Merge pull request #64 from biggraph/darabos-tweaks
Browse files- .gitignore +1 -0
- lynxkite-app/data/AIMO +1039 -0
- lynxkite-app/data/Graph RAG +194 -181
- lynxkite-app/data/Image processing +87 -75
- lynxkite-app/data/LynxScribe demo +267 -265
- lynxkite-app/data/PyTorch demo +270 -189
- lynxkite-app/data/aimo-examples.csv +11 -0
- lynxkite-app/data/example-pizza.md +136 -0
- lynxkite-app/data/night demo +0 -0
- lynxkite-app/web/src/workspace/nodes/NodeParameter.tsx +2 -1
- lynxkite-graph-analytics/pyproject.toml +2 -0
- lynxkite-graph-analytics/src/lynxkite_plugins/graph_analytics/lynxkite_ops.py +66 -3
- lynxkite-graph-analytics/src/lynxkite_plugins/graph_analytics/pytorch_model_ops.py +8 -0
- lynxkite-graph-analytics/uv.lock +251 -117
- lynxkite-lynxscribe/README.md +9 -0
- lynxkite-lynxscribe/src/lynxkite_plugins/lynxscribe/__init__.py +3 -0
- lynxkite-lynxscribe/src/lynxkite_plugins/lynxscribe/llm_ops.py +2 -2
- lynxkite-lynxscribe/src/lynxkite_plugins/lynxscribe/lynxscribe_ops.py +7 -19
- lynxkite-pillow-example/pyproject.toml +1 -0
- lynxkite-pillow-example/src/lynxkite_plugins/pillow_example/__init__.py +7 -3
- lynxkite-pillow-example/uv.lock +12 -1
.gitignore
CHANGED
@@ -11,4 +11,5 @@ __pycache__
|
|
11 |
node_modules
|
12 |
dist
|
13 |
build
|
|
|
14 |
*.egg-info
|
|
|
11 |
node_modules
|
12 |
dist
|
13 |
build
|
14 |
+
joblib-cache
|
15 |
*.egg-info
|
lynxkite-app/data/AIMO
ADDED
@@ -0,0 +1,1039 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"env": "LLM logic",
|
3 |
+
"nodes": [
|
4 |
+
{
|
5 |
+
"id": "View 1",
|
6 |
+
"type": "table_view",
|
7 |
+
"data": {
|
8 |
+
"title": "View",
|
9 |
+
"params": {},
|
10 |
+
"display": {
|
11 |
+
"dataframes": {
|
12 |
+
"df": {
|
13 |
+
"columns": [
|
14 |
+
"id",
|
15 |
+
"text",
|
16 |
+
"answer",
|
17 |
+
"prompt",
|
18 |
+
"response",
|
19 |
+
"iterations-Loop 1"
|
20 |
+
],
|
21 |
+
"data": [
|
22 |
+
[
|
23 |
+
"229ee8",
|
24 |
+
"Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
25 |
+
52,
|
26 |
+
"Please give a correct solution for this: Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
27 |
+
"To solve this problem, we need to follow these steps:\n\n1. **Understand the Parabola and Line Intersection:**\n The parabola is given by \\( y = kx^2 - 2kx + l \\).\n The line is given by \\( y = 4 \\).\n\n2. **Find the Intersection Points:**\n Set the equations equal to each other to find the points of intersection \\( A \\) and \\( B \\):\n ",
|
28 |
+
2
|
29 |
+
],
|
30 |
+
[
|
31 |
+
"246d26",
|
32 |
+
"Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
33 |
+
250,
|
34 |
+
"Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
35 |
+
"To solve this problem, we need to ensure that any two yellow numbers have a sum that is a blue number. \n\nLet's break down the problem:\n\n1. **Understand the problem constraints:**\n - We have three-digit numbers ranging from 111 to 999.\n - Each number must be colored either blue or yellow.\n - The sum of any two yellow numbers must be a blue number.\n\n2. **Define the variables:**\n -",
|
36 |
+
2
|
37 |
+
],
|
38 |
+
[
|
39 |
+
"2fc4ad",
|
40 |
+
"Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
41 |
+
702,
|
42 |
+
"Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
43 |
+
"Let's break down the problem step by step. \n\n**Understanding the Sparkle Operation:**\n\n1. **Sum of Digits:**\n For a number \\( n \\), the sum of its digits is calculated.\n\n2. **Factorial of Sum:**\n The sparkle is then calculated as \\( n! \\).\n\n**Special Numbers:**\n\nA special number is defined as one that eventually leads to every subsequent number being less than 6. This implies",
|
44 |
+
2
|
45 |
+
],
|
46 |
+
[
|
47 |
+
"430b63",
|
48 |
+
"What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
49 |
+
800,
|
50 |
+
"Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
51 |
+
"To solve the problem, we need to find the minimum value of the expression \\(5x^2 + 5y^2 - 8xy\\) subject to the constraint \\(|x - 2y| + |y - 2x| = 40\\).\n\nHere are the steps to solve this problem:\n\n1. **Understand the Constraint:**\n The constraint given is \\(|x - 2y| + |y - 2",
|
52 |
+
2
|
53 |
+
],
|
54 |
+
[
|
55 |
+
"5277ed",
|
56 |
+
"There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
57 |
+
211,
|
58 |
+
"Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
59 |
+
"To solve this problem, we need to find a unique increasing geometric sequence of five 2-digit positive integers. Let's denote the first term of the sequence by \\( a \\) and the common ratio by \\( r \\). The five terms of the sequence can be represented as:\n\n\\[ a, ar, ar^2, ar^3, ar^4 \\]\n\nGiven that all these terms are 2-digit positive integers, we need to find \\",
|
60 |
+
2
|
61 |
+
],
|
62 |
+
[
|
63 |
+
"739bc9",
|
64 |
+
"For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
65 |
+
199,
|
66 |
+
"Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
67 |
+
"To solve the problem, we need to analyze the equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac{m}{100}\\) and determine for how many positive integers \\(m\\) the equation has exactly 4 distinct solutions.\n\n### Steps to Solve the Problem:\n\n1. **Understand the Absolute Value Equation:**\n - The equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac",
|
68 |
+
2
|
69 |
+
],
|
70 |
+
[
|
71 |
+
"82e2a0",
|
72 |
+
"Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
73 |
+
185,
|
74 |
+
"Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
75 |
+
"To solve this problem, we need to determine the probability \\(\\frac{a}{b}\\) that the highest roll on four 6-sided dice is a 5, and then find the values of \\(a\\) and \\(b\\) such that \\(a\\) and \\(b\\) are relatively prime. Let's break down the steps:\n\n1. **Determine the Sample Space:**\n - Calculate the total number of possible outcomes when rolling four ",
|
76 |
+
2
|
77 |
+
],
|
78 |
+
[
|
79 |
+
"8ee6f3",
|
80 |
+
"The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
81 |
+
320,
|
82 |
+
"Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
83 |
+
"To solve this problem, we need to find the points \\((x, y)\\) that satisfy the given equation:\n\\[\n((\\text{Abs}(x + y) - 10)^2 + (\\text{Abs}(x - y) - 10)^2)((\\text{Abs}(x) - 8)^2 + (\\text{Abs}(y) - 8)^2) = 0\n\\]\n\nFirst,",
|
84 |
+
2
|
85 |
+
],
|
86 |
+
[
|
87 |
+
"bedda4",
|
88 |
+
"Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
89 |
+
480,
|
90 |
+
"Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
91 |
+
"To solve this problem, we need to carefully analyze the geometric configuration and calculate the areas of the four regions formed by the lines \\(DP\\) and \\(BQ\\) within the unit square \\(ABCD\\).\n\nLet's break down the problem into manageable parts:\n\n1. **Define the Coordinates:**\n - Place the unit square \\(ABCD\\) in the coordinate plane with \\(A\\) at \\((0, 0)\\),",
|
92 |
+
2
|
93 |
+
],
|
94 |
+
[
|
95 |
+
"d7e9c9",
|
96 |
+
"A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
97 |
+
199,
|
98 |
+
"Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
99 |
+
"To solve the problem, we need to find the function \\( f \\) that satisfies the given conditions:\n\n1. \\( f(f(f(n))) = 8n - 7 \\)\n2. \\( f(2n) = 2f(n) + 1 \\)\n\nLet's break down the problem step-by-step:\n\n### Step 1: Analyze the Recursion\n\nFirst, let's express",
|
100 |
+
2
|
101 |
+
]
|
102 |
+
]
|
103 |
+
}
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"error": null,
|
107 |
+
"meta": {
|
108 |
+
"outputs": {},
|
109 |
+
"type": "table_view",
|
110 |
+
"inputs": {
|
111 |
+
"input": {
|
112 |
+
"type": {
|
113 |
+
"type": "<class 'inspect._empty'>"
|
114 |
+
},
|
115 |
+
"name": "input",
|
116 |
+
"position": "left"
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"name": "View",
|
120 |
+
"params": {}
|
121 |
+
},
|
122 |
+
"view": {
|
123 |
+
"dataframes": {
|
124 |
+
"df": {
|
125 |
+
"columns": [
|
126 |
+
"id",
|
127 |
+
"text",
|
128 |
+
"answer",
|
129 |
+
"prompt",
|
130 |
+
"response"
|
131 |
+
],
|
132 |
+
"data": [
|
133 |
+
[
|
134 |
+
"229ee8",
|
135 |
+
"Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
136 |
+
52.0,
|
137 |
+
"Please give a correct solution for this: Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
138 |
+
" We start by finding the x-coordinates of points"
|
139 |
+
],
|
140 |
+
[
|
141 |
+
"246d26",
|
142 |
+
"Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
143 |
+
250.0,
|
144 |
+
"Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
145 |
+
" Let's consider the numbers in the form of"
|
146 |
+
],
|
147 |
+
[
|
148 |
+
"2fc4ad",
|
149 |
+
"Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
150 |
+
702.0,
|
151 |
+
"Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
152 |
+
" Let $S$ denote the set of all $"
|
153 |
+
],
|
154 |
+
[
|
155 |
+
"430b63",
|
156 |
+
"What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
157 |
+
800.0,
|
158 |
+
"Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
159 |
+
" We can rewrite the given equation as $|x-"
|
160 |
+
],
|
161 |
+
[
|
162 |
+
"5277ed",
|
163 |
+
"There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
164 |
+
211.0,
|
165 |
+
"Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
166 |
+
" Let the five terms of the geometric sequence be $"
|
167 |
+
],
|
168 |
+
[
|
169 |
+
"739bc9",
|
170 |
+
"For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
171 |
+
199.0,
|
172 |
+
"Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
173 |
+
" Let's break down the problem.\n\n"
|
174 |
+
],
|
175 |
+
[
|
176 |
+
"82e2a0",
|
177 |
+
"Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
178 |
+
185.0,
|
179 |
+
"Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
180 |
+
" The total number of outcomes when rolling four 6"
|
181 |
+
],
|
182 |
+
[
|
183 |
+
"8ee6f3",
|
184 |
+
"The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
185 |
+
320.0,
|
186 |
+
"Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
187 |
+
" We see that the given equation is equivalent to either"
|
188 |
+
],
|
189 |
+
[
|
190 |
+
"bedda4",
|
191 |
+
"Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
192 |
+
480.0,
|
193 |
+
"Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
194 |
+
" [asy] size(7cm); pair A"
|
195 |
+
],
|
196 |
+
[
|
197 |
+
"d7e9c9",
|
198 |
+
"A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
199 |
+
199.0,
|
200 |
+
"Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
201 |
+
" Let $P(n)$ be the assertion that"
|
202 |
+
]
|
203 |
+
]
|
204 |
+
}
|
205 |
+
}
|
206 |
+
}
|
207 |
+
},
|
208 |
+
"position": {
|
209 |
+
"x": 918.8473117253317,
|
210 |
+
"y": -788.2139000963755
|
211 |
+
},
|
212 |
+
"height": 497.0,
|
213 |
+
"dragging": false,
|
214 |
+
"measured": {
|
215 |
+
"height": 497.0,
|
216 |
+
"width": 847.0
|
217 |
+
},
|
218 |
+
"parentId": null,
|
219 |
+
"width": 847.0
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"id": "View 2",
|
223 |
+
"type": "table_view",
|
224 |
+
"data": {
|
225 |
+
"title": "View",
|
226 |
+
"params": {},
|
227 |
+
"display": {
|
228 |
+
"dataframes": {
|
229 |
+
"df": {
|
230 |
+
"columns": [
|
231 |
+
"id",
|
232 |
+
"text",
|
233 |
+
"answer"
|
234 |
+
],
|
235 |
+
"data": [
|
236 |
+
[
|
237 |
+
"229ee8",
|
238 |
+
"Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
239 |
+
52
|
240 |
+
],
|
241 |
+
[
|
242 |
+
"246d26",
|
243 |
+
"Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
244 |
+
250
|
245 |
+
],
|
246 |
+
[
|
247 |
+
"2fc4ad",
|
248 |
+
"Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
249 |
+
702
|
250 |
+
],
|
251 |
+
[
|
252 |
+
"430b63",
|
253 |
+
"What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
254 |
+
800
|
255 |
+
],
|
256 |
+
[
|
257 |
+
"5277ed",
|
258 |
+
"There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
259 |
+
211
|
260 |
+
],
|
261 |
+
[
|
262 |
+
"739bc9",
|
263 |
+
"For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
264 |
+
199
|
265 |
+
],
|
266 |
+
[
|
267 |
+
"82e2a0",
|
268 |
+
"Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
269 |
+
185
|
270 |
+
],
|
271 |
+
[
|
272 |
+
"8ee6f3",
|
273 |
+
"The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
274 |
+
320
|
275 |
+
],
|
276 |
+
[
|
277 |
+
"bedda4",
|
278 |
+
"Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
279 |
+
480
|
280 |
+
],
|
281 |
+
[
|
282 |
+
"d7e9c9",
|
283 |
+
"A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
284 |
+
199
|
285 |
+
]
|
286 |
+
]
|
287 |
+
}
|
288 |
+
}
|
289 |
+
},
|
290 |
+
"error": null,
|
291 |
+
"meta": {
|
292 |
+
"name": "View",
|
293 |
+
"outputs": {},
|
294 |
+
"params": {},
|
295 |
+
"type": "table_view",
|
296 |
+
"inputs": {
|
297 |
+
"input": {
|
298 |
+
"name": "input",
|
299 |
+
"type": {
|
300 |
+
"type": "<class 'inspect._empty'>"
|
301 |
+
},
|
302 |
+
"position": "left"
|
303 |
+
}
|
304 |
+
}
|
305 |
+
},
|
306 |
+
"view": {
|
307 |
+
"dataframes": {
|
308 |
+
"df": {
|
309 |
+
"data": [
|
310 |
+
[
|
311 |
+
"229ee8",
|
312 |
+
"Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
313 |
+
52.0
|
314 |
+
],
|
315 |
+
[
|
316 |
+
"246d26",
|
317 |
+
"Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
318 |
+
250.0
|
319 |
+
],
|
320 |
+
[
|
321 |
+
"2fc4ad",
|
322 |
+
"Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
323 |
+
702.0
|
324 |
+
],
|
325 |
+
[
|
326 |
+
"430b63",
|
327 |
+
"What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
328 |
+
800.0
|
329 |
+
],
|
330 |
+
[
|
331 |
+
"5277ed",
|
332 |
+
"There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
333 |
+
211.0
|
334 |
+
],
|
335 |
+
[
|
336 |
+
"739bc9",
|
337 |
+
"For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
338 |
+
199.0
|
339 |
+
],
|
340 |
+
[
|
341 |
+
"82e2a0",
|
342 |
+
"Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
343 |
+
185.0
|
344 |
+
],
|
345 |
+
[
|
346 |
+
"8ee6f3",
|
347 |
+
"The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
348 |
+
320.0
|
349 |
+
],
|
350 |
+
[
|
351 |
+
"bedda4",
|
352 |
+
"Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
353 |
+
480.0
|
354 |
+
],
|
355 |
+
[
|
356 |
+
"d7e9c9",
|
357 |
+
"A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
358 |
+
199.0
|
359 |
+
]
|
360 |
+
],
|
361 |
+
"columns": [
|
362 |
+
"id",
|
363 |
+
"text",
|
364 |
+
"answer"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
}
|
368 |
+
}
|
369 |
+
},
|
370 |
+
"position": {
|
371 |
+
"x": -109.39082282780262,
|
372 |
+
"y": -773.6298092973026
|
373 |
+
},
|
374 |
+
"height": 491.0,
|
375 |
+
"dragging": false,
|
376 |
+
"measured": {
|
377 |
+
"width": 642.0,
|
378 |
+
"height": 491.0
|
379 |
+
},
|
380 |
+
"parentId": null,
|
381 |
+
"width": 642.0
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"id": "Create prompt 1",
|
385 |
+
"type": "basic",
|
386 |
+
"data": {
|
387 |
+
"title": "Create prompt",
|
388 |
+
"params": {
|
389 |
+
"template": "Please give a correct solution for this: {{text}}"
|
390 |
+
},
|
391 |
+
"display": null,
|
392 |
+
"error": null,
|
393 |
+
"collapsed": null,
|
394 |
+
"meta": {
|
395 |
+
"outputs": {
|
396 |
+
"output": {
|
397 |
+
"type": {
|
398 |
+
"type": "None"
|
399 |
+
},
|
400 |
+
"name": "output",
|
401 |
+
"position": "right"
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"params": {
|
405 |
+
"save_as": {
|
406 |
+
"type": {
|
407 |
+
"type": "<class 'str'>"
|
408 |
+
},
|
409 |
+
"name": "save_as",
|
410 |
+
"default": "prompt"
|
411 |
+
},
|
412 |
+
"template": {
|
413 |
+
"default": null,
|
414 |
+
"name": "template",
|
415 |
+
"type": {
|
416 |
+
"format": "textarea"
|
417 |
+
}
|
418 |
+
}
|
419 |
+
},
|
420 |
+
"type": "basic",
|
421 |
+
"inputs": {
|
422 |
+
"input": {
|
423 |
+
"position": "left",
|
424 |
+
"type": {
|
425 |
+
"type": "<class 'inspect._empty'>"
|
426 |
+
},
|
427 |
+
"name": "input"
|
428 |
+
}
|
429 |
+
},
|
430 |
+
"name": "Create prompt"
|
431 |
+
},
|
432 |
+
"__execution_delay": 0.0
|
433 |
+
},
|
434 |
+
"position": {
|
435 |
+
"x": -55.639116348124276,
|
436 |
+
"y": -180.9050378792738
|
437 |
+
},
|
438 |
+
"parentId": null,
|
439 |
+
"dragging": false,
|
440 |
+
"width": 321.0,
|
441 |
+
"measured": {
|
442 |
+
"height": 322.0,
|
443 |
+
"width": 321.0
|
444 |
+
},
|
445 |
+
"height": 322.0
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"id": "Create prompt 2",
|
449 |
+
"type": "basic",
|
450 |
+
"data": {
|
451 |
+
"title": "Create prompt",
|
452 |
+
"params": {
|
453 |
+
"template": "Is this a nice solution? {{response}}"
|
454 |
+
},
|
455 |
+
"display": null,
|
456 |
+
"error": null,
|
457 |
+
"__execution_delay": 0.0,
|
458 |
+
"meta": {
|
459 |
+
"inputs": {
|
460 |
+
"input": {
|
461 |
+
"name": "input",
|
462 |
+
"type": {
|
463 |
+
"type": "<class 'inspect._empty'>"
|
464 |
+
},
|
465 |
+
"position": "left"
|
466 |
+
}
|
467 |
+
},
|
468 |
+
"outputs": {
|
469 |
+
"output": {
|
470 |
+
"type": {
|
471 |
+
"type": "None"
|
472 |
+
},
|
473 |
+
"position": "right",
|
474 |
+
"name": "output"
|
475 |
+
}
|
476 |
+
},
|
477 |
+
"params": {
|
478 |
+
"save_as": {
|
479 |
+
"name": "save_as",
|
480 |
+
"default": "prompt",
|
481 |
+
"type": {
|
482 |
+
"type": "<class 'str'>"
|
483 |
+
}
|
484 |
+
},
|
485 |
+
"template": {
|
486 |
+
"name": "template",
|
487 |
+
"type": {
|
488 |
+
"format": "textarea"
|
489 |
+
},
|
490 |
+
"default": null
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"name": "Create prompt",
|
494 |
+
"type": "basic"
|
495 |
+
},
|
496 |
+
"collapsed": null
|
497 |
+
},
|
498 |
+
"position": {
|
499 |
+
"x": 916.0813218020223,
|
500 |
+
"y": 27.604649145022677
|
501 |
+
},
|
502 |
+
"width": 292.0,
|
503 |
+
"dragging": false,
|
504 |
+
"parentId": null,
|
505 |
+
"measured": {
|
506 |
+
"height": 278.0,
|
507 |
+
"width": 292.0
|
508 |
+
},
|
509 |
+
"height": 278.0
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"id": "View 3",
|
513 |
+
"type": "table_view",
|
514 |
+
"data": {
|
515 |
+
"title": "View",
|
516 |
+
"params": {},
|
517 |
+
"display": {
|
518 |
+
"dataframes": {
|
519 |
+
"df": {
|
520 |
+
"columns": [
|
521 |
+
"id",
|
522 |
+
"text",
|
523 |
+
"answer",
|
524 |
+
"prompt",
|
525 |
+
"response",
|
526 |
+
"iterations-Loop 1"
|
527 |
+
],
|
528 |
+
"data": [
|
529 |
+
[
|
530 |
+
"229ee8",
|
531 |
+
"Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
532 |
+
52,
|
533 |
+
"Is this a nice solution? To solve this problem, we need to follow these steps:\n\n1. **Understand the Parabola and Line Intersection:**\n The parabola is given by \\( y = kx^2 - 2kx + l \\).\n The line is given by \\( y = 4 \\).\n\n2. **Find the Intersection Points:**\n Set the equations equal to each other to find the points of intersection \\( A \\) and \\( B \\):\n ",
|
534 |
+
"To solve this problem, we need to set the equation of the parabola equal to the equation of the line and solve for the points of intersection. Let's break it down into the steps you've outlined and use Python with SymPy to find the solution.\n\n### Steps:\n\n1. **Understand the Parabola and Line Intersection:**\n - The equation of the parabola is \\( y = kx^2 - 2kx + l \\).\n - The",
|
535 |
+
3
|
536 |
+
],
|
537 |
+
[
|
538 |
+
"246d26",
|
539 |
+
"Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
540 |
+
250,
|
541 |
+
"Is this a nice solution? To solve this problem, we need to ensure that any two yellow numbers have a sum that is a blue number. \n\nLet's break down the problem:\n\n1. **Understand the problem constraints:**\n - We have three-digit numbers ranging from 111 to 999.\n - Each number must be colored either blue or yellow.\n - The sum of any two yellow numbers must be a blue number.\n\n2. **Define the variables:**\n -",
|
542 |
+
"To solve this problem, we need to ensure that for any two yellow numbers, their sum falls within the range of blue numbers. Let's break down the problem step-by-step.\n\n### Problem Breakdown\n\n1. **Define the Variables:**\n - Let \\( Y \\) be a set of three-digit yellow numbers.\n - Let \\( B \\) be a set of three-digit blue numbers.\n - Let \\( \\text{Sum}(a",
|
543 |
+
3
|
544 |
+
],
|
545 |
+
[
|
546 |
+
"2fc4ad",
|
547 |
+
"Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
548 |
+
702,
|
549 |
+
"Is this a nice solution? Let's break down the problem step by step. \n\n**Understanding the Sparkle Operation:**\n\n1. **Sum of Digits:**\n For a number \\( n \\), the sum of its digits is calculated.\n\n2. **Factorial of Sum:**\n The sparkle is then calculated as \\( n! \\).\n\n**Special Numbers:**\n\nA special number is defined as one that eventually leads to every subsequent number being less than 6. This implies",
|
550 |
+
"The solution you've provided for calculating a Sparkle number is a structured approach to solving the problem, but it could be improved in several ways to ensure clarity, efficiency, and completeness. Let's break down the steps and identify potential improvements:\n\n1. **Understanding the Problem:**\n - **Sum of Digits:** Calculate the sum of the digits of a number \\( n \\).\n - **Factorial Calculation:** Compute the factorial of the sum of digits.\n\n2",
|
551 |
+
3
|
552 |
+
],
|
553 |
+
[
|
554 |
+
"430b63",
|
555 |
+
"What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
556 |
+
800,
|
557 |
+
"Is this a nice solution? To solve the problem, we need to find the minimum value of the expression \\(5x^2 + 5y^2 - 8xy\\) subject to the constraint \\(|x - 2y| + |y - 2x| = 40\\).\n\nHere are the steps to solve this problem:\n\n1. **Understand the Constraint:**\n The constraint given is \\(|x - 2y| + |y - 2",
|
558 |
+
"To solve this optimization problem with the given constraint, we can use the method of Lagrange multipliers. This technique is useful when we have a function to maximize or minimize subject to equality constraints.\n\nGiven:\n\\[ f(x, y) = 5x^2 + 5y^2 - 8xy \\]\n\\[ g(x, y) = |x - 2y| + |y - 2x| = 40 \\",
|
559 |
+
3
|
560 |
+
],
|
561 |
+
[
|
562 |
+
"5277ed",
|
563 |
+
"There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
564 |
+
211,
|
565 |
+
"Is this a nice solution? To solve this problem, we need to find a unique increasing geometric sequence of five 2-digit positive integers. Let's denote the first term of the sequence by \\( a \\) and the common ratio by \\( r \\). The five terms of the sequence can be represented as:\n\n\\[ a, ar, ar^2, ar^3, ar^4 \\]\n\nGiven that all these terms are 2-digit positive integers, we need to find \\",
|
566 |
+
"To solve the problem of finding a unique increasing geometric sequence of five 2-digit positive integers \\(a, ar, ar^2, ar^3, ar^4\\), we can follow these steps:\n\n1. **Understand the Problem:**\n We need to find \\(a\\) and \\(r\\) such that \\(a, ar, ar^2, ar^3, ar^4\\) are all 2-digit positive integers. Let",
|
567 |
+
3
|
568 |
+
],
|
569 |
+
[
|
570 |
+
"739bc9",
|
571 |
+
"For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
572 |
+
199,
|
573 |
+
"Is this a nice solution? To solve the problem, we need to analyze the equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac{m}{100}\\) and determine for how many positive integers \\(m\\) the equation has exactly 4 distinct solutions.\n\n### Steps to Solve the Problem:\n\n1. **Understand the Absolute Value Equation:**\n - The equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac",
|
574 |
+
"To solve the problem, we need to determine the number of positive integers \\( m \\) for which the equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac{m}{100}\\) has exactly 4 distinct solutions for \\( x \\).\n\n### Step-by-Step Solution:\n\n1. **Analyze the Absolute Value Equation:**\n The equation \\(\\vert \\vert x-1 \\vert - 2 \\",
|
575 |
+
3
|
576 |
+
],
|
577 |
+
[
|
578 |
+
"82e2a0",
|
579 |
+
"Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
580 |
+
185,
|
581 |
+
"Is this a nice solution? To solve this problem, we need to determine the probability \\(\\frac{a}{b}\\) that the highest roll on four 6-sided dice is a 5, and then find the values of \\(a\\) and \\(b\\) such that \\(a\\) and \\(b\\) are relatively prime. Let's break down the steps:\n\n1. **Determine the Sample Space:**\n - Calculate the total number of possible outcomes when rolling four ",
|
582 |
+
"Sure, to determine if the solution provided is \"nice\" in the context of being clear, concise, and well-organized, let's evaluate the solution for clarity and completeness:\n\n### Solution Breakdown\n\n1. **Determine the Sample Space:**\n - **Calculate the Total Number of Possible Outcomes:**\n Rolling four 6-sided dice means each die has 6 possible outcomes. Therefore, the total number of possible outcomes is:\n \\[\n 6 \\times ",
|
583 |
+
3
|
584 |
+
],
|
585 |
+
[
|
586 |
+
"8ee6f3",
|
587 |
+
"The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
588 |
+
320,
|
589 |
+
"Is this a nice solution? To solve this problem, we need to find the points \\((x, y)\\) that satisfy the given equation:\n\\[\n((\\text{Abs}(x + y) - 10)^2 + (\\text{Abs}(x - y) - 10)^2)((\\text{Abs}(x) - 8)^2 + (\\text{Abs}(y) - 8)^2) = 0\n\\]\n\nFirst,",
|
590 |
+
"To determine if the given solution is \"nice\" (i.e., provides integer or simple coordinates), we need to analyze the equation:\n\n\\[\n((\\text{Abs}(x + y) - 10)^2 + (\\text{Abs}(x - y) - 10)^2)((\\text{Abs}(x) - 8)^2 + (\\text{Abs}(y) - 8)^2) = 0\n",
|
591 |
+
3
|
592 |
+
],
|
593 |
+
[
|
594 |
+
"bedda4",
|
595 |
+
"Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
596 |
+
480,
|
597 |
+
"Is this a nice solution? To solve this problem, we need to carefully analyze the geometric configuration and calculate the areas of the four regions formed by the lines \\(DP\\) and \\(BQ\\) within the unit square \\(ABCD\\).\n\nLet's break down the problem into manageable parts:\n\n1. **Define the Coordinates:**\n - Place the unit square \\(ABCD\\) in the coordinate plane with \\(A\\) at \\((0, 0)\\),",
|
598 |
+
"Yes, this is a nice and clear solution to the problem of calculating the areas of the four regions formed by the lines \\(DP\\) and \\(BQ\\) within a unit square \\(ABCD\\). Here's a step-by-step breakdown of the approach:\n\n1. **Define the Coordinates:**\n - Place the unit square \\(ABCD\\) in the coordinate plane with \\(A\\) at \\((0, 0)\\),",
|
599 |
+
3
|
600 |
+
],
|
601 |
+
[
|
602 |
+
"d7e9c9",
|
603 |
+
"A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
604 |
+
199,
|
605 |
+
"Is this a nice solution? To solve the problem, we need to find the function \\( f \\) that satisfies the given conditions:\n\n1. \\( f(f(f(n))) = 8n - 7 \\)\n2. \\( f(2n) = 2f(n) + 1 \\)\n\nLet's break down the problem step-by-step:\n\n### Step 1: Analyze the Recursion\n\nFirst, let's express",
|
606 |
+
"To solve the problem, we need to find a function \\( f \\) that satisfies the given conditions:\n\n1. \\( f(f(f(n))) = 8n - 7 \\)\n2. \\( f(2n) = 2f(n) + 1 \\)\n\nLet's break down the problem step-by-step:\n\n### Step 1: Analyze the Recursion\n\nGiven the recursive nature of",
|
607 |
+
3
|
608 |
+
]
|
609 |
+
]
|
610 |
+
}
|
611 |
+
}
|
612 |
+
},
|
613 |
+
"error": null,
|
614 |
+
"view": {
|
615 |
+
"dataframes": {
|
616 |
+
"df": {
|
617 |
+
"columns": [
|
618 |
+
"id",
|
619 |
+
"text",
|
620 |
+
"answer",
|
621 |
+
"prompt",
|
622 |
+
"response"
|
623 |
+
],
|
624 |
+
"data": [
|
625 |
+
[
|
626 |
+
"229ee8",
|
627 |
+
"Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
|
628 |
+
52.0,
|
629 |
+
"Is this a nice solution? We start by finding the x-coordinates of points",
|
630 |
+
"no"
|
631 |
+
],
|
632 |
+
[
|
633 |
+
"246d26",
|
634 |
+
"Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
|
635 |
+
250.0,
|
636 |
+
"Is this a nice solution? Let's consider the numbers in the form of",
|
637 |
+
"no"
|
638 |
+
],
|
639 |
+
[
|
640 |
+
"2fc4ad",
|
641 |
+
"Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
|
642 |
+
702.0,
|
643 |
+
"Is this a nice solution? Let $S$ denote the set of all $",
|
644 |
+
"no"
|
645 |
+
],
|
646 |
+
[
|
647 |
+
"430b63",
|
648 |
+
"What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
|
649 |
+
800.0,
|
650 |
+
"Is this a nice solution? We can rewrite the given equation as $|x-",
|
651 |
+
"no"
|
652 |
+
],
|
653 |
+
[
|
654 |
+
"5277ed",
|
655 |
+
"There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
|
656 |
+
211.0,
|
657 |
+
"Is this a nice solution? Let the five terms of the geometric sequence be $",
|
658 |
+
"yes"
|
659 |
+
],
|
660 |
+
[
|
661 |
+
"739bc9",
|
662 |
+
"For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
|
663 |
+
199.0,
|
664 |
+
"Is this a nice solution? Let's break down the problem.\n\n",
|
665 |
+
"yes"
|
666 |
+
],
|
667 |
+
[
|
668 |
+
"82e2a0",
|
669 |
+
"Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
|
670 |
+
185.0,
|
671 |
+
"Is this a nice solution? The total number of outcomes when rolling four 6",
|
672 |
+
"no"
|
673 |
+
],
|
674 |
+
[
|
675 |
+
"8ee6f3",
|
676 |
+
"The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
|
677 |
+
320.0,
|
678 |
+
"Is this a nice solution? We see that the given equation is equivalent to either",
|
679 |
+
"no"
|
680 |
+
],
|
681 |
+
[
|
682 |
+
"bedda4",
|
683 |
+
"Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
|
684 |
+
480.0,
|
685 |
+
"Is this a nice solution? [asy] size(7cm); pair A",
|
686 |
+
"no"
|
687 |
+
],
|
688 |
+
[
|
689 |
+
"d7e9c9",
|
690 |
+
"A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
|
691 |
+
199.0,
|
692 |
+
"Is this a nice solution? Let $P(n)$ be the assertion that",
|
693 |
+
"yes"
|
694 |
+
]
|
695 |
+
]
|
696 |
+
}
|
697 |
+
}
|
698 |
+
},
|
699 |
+
"meta": {
|
700 |
+
"name": "View",
|
701 |
+
"type": "table_view",
|
702 |
+
"params": {},
|
703 |
+
"inputs": {
|
704 |
+
"input": {
|
705 |
+
"type": {
|
706 |
+
"type": "<class 'inspect._empty'>"
|
707 |
+
},
|
708 |
+
"name": "input",
|
709 |
+
"position": "left"
|
710 |
+
}
|
711 |
+
},
|
712 |
+
"outputs": {}
|
713 |
+
}
|
714 |
+
},
|
715 |
+
"position": {
|
716 |
+
"x": 1997.201620358635,
|
717 |
+
"y": -45.77336526660309
|
718 |
+
},
|
719 |
+
"height": 599.0,
|
720 |
+
"dragging": false,
|
721 |
+
"width": 1046.0,
|
722 |
+
"measured": {
|
723 |
+
"height": 599.0,
|
724 |
+
"width": 1046.0
|
725 |
+
},
|
726 |
+
"parentId": null
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"id": "Loop 1",
|
730 |
+
"type": "basic",
|
731 |
+
"data": {
|
732 |
+
"title": "Loop",
|
733 |
+
"params": {
|
734 |
+
"max_iterations": 10.0
|
735 |
+
},
|
736 |
+
"display": null,
|
737 |
+
"error": null,
|
738 |
+
"meta": {
|
739 |
+
"outputs": {
|
740 |
+
"output": {
|
741 |
+
"type": {
|
742 |
+
"type": "None"
|
743 |
+
},
|
744 |
+
"position": "left",
|
745 |
+
"name": "output"
|
746 |
+
}
|
747 |
+
},
|
748 |
+
"name": "Loop",
|
749 |
+
"params": {
|
750 |
+
"max_iterations": {
|
751 |
+
"default": 3.0,
|
752 |
+
"type": {
|
753 |
+
"type": "<class 'int'>"
|
754 |
+
},
|
755 |
+
"name": "max_iterations"
|
756 |
+
}
|
757 |
+
},
|
758 |
+
"inputs": {
|
759 |
+
"input": {
|
760 |
+
"name": "input",
|
761 |
+
"type": {
|
762 |
+
"type": "<class 'inspect._empty'>"
|
763 |
+
},
|
764 |
+
"position": "right"
|
765 |
+
}
|
766 |
+
},
|
767 |
+
"type": "basic"
|
768 |
+
}
|
769 |
+
},
|
770 |
+
"position": {
|
771 |
+
"x": 174.3218329398557,
|
772 |
+
"y": 350.51597142125047
|
773 |
+
},
|
774 |
+
"width": 362.0,
|
775 |
+
"height": 175.0,
|
776 |
+
"parentId": null,
|
777 |
+
"dragging": false,
|
778 |
+
"measured": {
|
779 |
+
"height": 175.0,
|
780 |
+
"width": 362.0
|
781 |
+
}
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"id": "Input CSV 1",
|
785 |
+
"type": "basic",
|
786 |
+
"data": {
|
787 |
+
"title": "Input CSV",
|
788 |
+
"params": {
|
789 |
+
"filename": "data/aimo-examples.csv",
|
790 |
+
"key": "problem"
|
791 |
+
},
|
792 |
+
"display": null,
|
793 |
+
"error": null,
|
794 |
+
"meta": {
|
795 |
+
"outputs": {
|
796 |
+
"output": {
|
797 |
+
"type": {
|
798 |
+
"type": "None"
|
799 |
+
},
|
800 |
+
"position": "right",
|
801 |
+
"name": "output"
|
802 |
+
}
|
803 |
+
},
|
804 |
+
"inputs": {},
|
805 |
+
"params": {
|
806 |
+
"filename": {
|
807 |
+
"type": {
|
808 |
+
"format": "path"
|
809 |
+
},
|
810 |
+
"name": "filename",
|
811 |
+
"default": null
|
812 |
+
},
|
813 |
+
"key": {
|
814 |
+
"type": {
|
815 |
+
"type": "<class 'str'>"
|
816 |
+
},
|
817 |
+
"name": "key",
|
818 |
+
"default": null
|
819 |
+
}
|
820 |
+
},
|
821 |
+
"name": "Input CSV",
|
822 |
+
"position": {
|
823 |
+
"y": 108.0,
|
824 |
+
"x": 297.0
|
825 |
+
},
|
826 |
+
"type": "basic"
|
827 |
+
},
|
828 |
+
"__execution_delay": 0.0,
|
829 |
+
"collapsed": null
|
830 |
+
},
|
831 |
+
"position": {
|
832 |
+
"x": -679.7002594023377,
|
833 |
+
"y": -415.71560732240505
|
834 |
+
},
|
835 |
+
"width": 344.0,
|
836 |
+
"height": 302.0
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"id": "Ask LLM 3",
|
840 |
+
"type": "basic",
|
841 |
+
"data": {
|
842 |
+
"title": "Ask LLM",
|
843 |
+
"params": {
|
844 |
+
"model": "SultanR/SmolTulu-1.7b-Instruct",
|
845 |
+
"accepted_regex": null,
|
846 |
+
"max_tokens": 100.0
|
847 |
+
},
|
848 |
+
"display": null,
|
849 |
+
"error": null,
|
850 |
+
"meta": {
|
851 |
+
"position": {
|
852 |
+
"x": 822.0,
|
853 |
+
"y": 124.0
|
854 |
+
},
|
855 |
+
"outputs": {
|
856 |
+
"output": {
|
857 |
+
"type": {
|
858 |
+
"type": "None"
|
859 |
+
},
|
860 |
+
"name": "output",
|
861 |
+
"position": "right"
|
862 |
+
}
|
863 |
+
},
|
864 |
+
"inputs": {
|
865 |
+
"input": {
|
866 |
+
"name": "input",
|
867 |
+
"type": {
|
868 |
+
"type": "<class 'inspect._empty'>"
|
869 |
+
},
|
870 |
+
"position": "left"
|
871 |
+
}
|
872 |
+
},
|
873 |
+
"params": {
|
874 |
+
"accepted_regex": {
|
875 |
+
"default": null,
|
876 |
+
"name": "accepted_regex",
|
877 |
+
"type": {
|
878 |
+
"type": "<class 'str'>"
|
879 |
+
}
|
880 |
+
},
|
881 |
+
"max_tokens": {
|
882 |
+
"type": {
|
883 |
+
"type": "<class 'int'>"
|
884 |
+
},
|
885 |
+
"default": 100.0,
|
886 |
+
"name": "max_tokens"
|
887 |
+
},
|
888 |
+
"model": {
|
889 |
+
"default": null,
|
890 |
+
"type": {
|
891 |
+
"type": "<class 'str'>"
|
892 |
+
},
|
893 |
+
"name": "model"
|
894 |
+
}
|
895 |
+
},
|
896 |
+
"name": "Ask LLM",
|
897 |
+
"type": "basic"
|
898 |
+
},
|
899 |
+
"collapsed": null,
|
900 |
+
"__execution_delay": 0.0
|
901 |
+
},
|
902 |
+
"position": {
|
903 |
+
"x": 404.2326800558385,
|
904 |
+
"y": -173.5420967906593
|
905 |
+
},
|
906 |
+
"width": 372.0,
|
907 |
+
"height": 331.0
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"id": "Ask LLM 1",
|
911 |
+
"type": "basic",
|
912 |
+
"data": {
|
913 |
+
"title": "Ask LLM",
|
914 |
+
"params": {
|
915 |
+
"model": "SultanR/SmolTulu-1.7b-Instruct",
|
916 |
+
"accepted_regex": "yes|no",
|
917 |
+
"max_tokens": "100"
|
918 |
+
},
|
919 |
+
"display": null,
|
920 |
+
"error": null,
|
921 |
+
"meta": {
|
922 |
+
"outputs": {
|
923 |
+
"output": {
|
924 |
+
"position": "right",
|
925 |
+
"name": "output",
|
926 |
+
"type": {
|
927 |
+
"type": "None"
|
928 |
+
}
|
929 |
+
}
|
930 |
+
},
|
931 |
+
"name": "Ask LLM",
|
932 |
+
"inputs": {
|
933 |
+
"input": {
|
934 |
+
"name": "input",
|
935 |
+
"type": {
|
936 |
+
"type": "<class 'inspect._empty'>"
|
937 |
+
},
|
938 |
+
"position": "left"
|
939 |
+
}
|
940 |
+
},
|
941 |
+
"params": {
|
942 |
+
"max_tokens": {
|
943 |
+
"default": 100.0,
|
944 |
+
"type": {
|
945 |
+
"type": "<class 'int'>"
|
946 |
+
},
|
947 |
+
"name": "max_tokens"
|
948 |
+
},
|
949 |
+
"accepted_regex": {
|
950 |
+
"type": {
|
951 |
+
"type": "<class 'str'>"
|
952 |
+
},
|
953 |
+
"default": null,
|
954 |
+
"name": "accepted_regex"
|
955 |
+
},
|
956 |
+
"model": {
|
957 |
+
"default": null,
|
958 |
+
"type": {
|
959 |
+
"type": "<class 'str'>"
|
960 |
+
},
|
961 |
+
"name": "model"
|
962 |
+
}
|
963 |
+
},
|
964 |
+
"type": "basic",
|
965 |
+
"position": {
|
966 |
+
"y": 509.0,
|
967 |
+
"x": 868.0
|
968 |
+
}
|
969 |
+
},
|
970 |
+
"collapsed": null,
|
971 |
+
"__execution_delay": 0.0
|
972 |
+
},
|
973 |
+
"position": {
|
974 |
+
"x": 1382.8452916325896,
|
975 |
+
"y": 6.3459091373125105
|
976 |
+
},
|
977 |
+
"width": 408.0,
|
978 |
+
"height": 328.0
|
979 |
+
}
|
980 |
+
],
|
981 |
+
"edges": [
|
982 |
+
{
|
983 |
+
"id": "Input CSV 1 View 2",
|
984 |
+
"source": "Input CSV 1",
|
985 |
+
"target": "View 2",
|
986 |
+
"sourceHandle": "output",
|
987 |
+
"targetHandle": "input"
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"id": "Input CSV 1 Create prompt 1",
|
991 |
+
"source": "Input CSV 1",
|
992 |
+
"target": "Create prompt 1",
|
993 |
+
"sourceHandle": "output",
|
994 |
+
"targetHandle": "input"
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"id": "Create prompt 1 Ask LLM 3",
|
998 |
+
"source": "Create prompt 1",
|
999 |
+
"target": "Ask LLM 3",
|
1000 |
+
"sourceHandle": "output",
|
1001 |
+
"targetHandle": "input"
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"id": "Ask LLM 3 Create prompt 2",
|
1005 |
+
"source": "Ask LLM 3",
|
1006 |
+
"target": "Create prompt 2",
|
1007 |
+
"sourceHandle": "output",
|
1008 |
+
"targetHandle": "input"
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"id": "Ask LLM 3 Loop 1",
|
1012 |
+
"source": "Ask LLM 3",
|
1013 |
+
"target": "Loop 1",
|
1014 |
+
"sourceHandle": "output",
|
1015 |
+
"targetHandle": "input"
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"id": "Ask LLM 3 View 1",
|
1019 |
+
"source": "Ask LLM 3",
|
1020 |
+
"target": "View 1",
|
1021 |
+
"sourceHandle": "output",
|
1022 |
+
"targetHandle": "input"
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"id": "Create prompt 2 Ask LLM 1",
|
1026 |
+
"source": "Create prompt 2",
|
1027 |
+
"target": "Ask LLM 1",
|
1028 |
+
"sourceHandle": "output",
|
1029 |
+
"targetHandle": "input"
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"id": "Ask LLM 1 View 3",
|
1033 |
+
"source": "Ask LLM 1",
|
1034 |
+
"target": "View 3",
|
1035 |
+
"sourceHandle": "output",
|
1036 |
+
"targetHandle": "input"
|
1037 |
+
}
|
1038 |
+
]
|
1039 |
+
}
|
lynxkite-app/data/Graph RAG
CHANGED
@@ -7,22 +7,24 @@
|
|
7 |
"data": {
|
8 |
"title": "Input document",
|
9 |
"params": {
|
10 |
-
"filename": "/
|
11 |
},
|
12 |
"display": null,
|
13 |
"error": null,
|
|
|
14 |
"meta": {
|
15 |
-
"
|
16 |
"params": {
|
17 |
"filename": {
|
18 |
-
"name": "filename",
|
19 |
-
"default": null,
|
20 |
"type": {
|
21 |
"format": "path"
|
22 |
-
}
|
|
|
|
|
23 |
}
|
24 |
},
|
25 |
"inputs": {},
|
|
|
26 |
"outputs": {
|
27 |
"output": {
|
28 |
"name": "output",
|
@@ -31,16 +33,17 @@
|
|
31 |
},
|
32 |
"position": "right"
|
33 |
}
|
34 |
-
}
|
35 |
-
|
36 |
-
|
37 |
-
}
|
38 |
},
|
39 |
"position": {
|
40 |
-
"x": -
|
41 |
-
"y": -
|
42 |
},
|
43 |
-
"parentId": null
|
|
|
|
|
44 |
},
|
45 |
{
|
46 |
"id": "View 1",
|
@@ -188,7 +191,6 @@
|
|
188 |
"error": null,
|
189 |
"meta": {
|
190 |
"name": "View",
|
191 |
-
"params": {},
|
192 |
"inputs": {
|
193 |
"input": {
|
194 |
"name": "input",
|
@@ -199,8 +201,8 @@
|
|
199 |
}
|
200 |
},
|
201 |
"outputs": {},
|
202 |
-
"
|
203 |
-
"
|
204 |
},
|
205 |
"beingResized": false
|
206 |
},
|
@@ -209,8 +211,8 @@
|
|
209 |
"y": -562.3096858852143
|
210 |
},
|
211 |
"parentId": null,
|
212 |
-
"width":
|
213 |
-
"height":
|
214 |
},
|
215 |
{
|
216 |
"id": "Split document 1",
|
@@ -223,25 +225,26 @@
|
|
223 |
"display": null,
|
224 |
"error": null,
|
225 |
"meta": {
|
226 |
-
"name": "Split document",
|
227 |
"params": {
|
228 |
"delimiter": {
|
229 |
"name": "delimiter",
|
230 |
-
"default": "\\n\\n",
|
231 |
"type": {
|
232 |
"type": "<class 'str'>"
|
233 |
-
}
|
|
|
234 |
}
|
235 |
},
|
|
|
236 |
"inputs": {
|
237 |
"input": {
|
238 |
-
"name": "input",
|
239 |
"type": {
|
240 |
"type": "<class 'inspect._empty'>"
|
241 |
},
|
242 |
-
"position": "left"
|
|
|
243 |
}
|
244 |
},
|
|
|
245 |
"outputs": {
|
246 |
"output": {
|
247 |
"name": "output",
|
@@ -250,16 +253,16 @@
|
|
250 |
},
|
251 |
"position": "right"
|
252 |
}
|
253 |
-
}
|
254 |
-
"type": "basic",
|
255 |
-
"sub_nodes": null
|
256 |
}
|
257 |
},
|
258 |
"position": {
|
259 |
-
"x": -
|
260 |
-
"y": -
|
261 |
},
|
262 |
-
"parentId": null
|
|
|
|
|
263 |
},
|
264 |
{
|
265 |
"id": "Input chat 1",
|
@@ -271,7 +274,9 @@
|
|
271 |
},
|
272 |
"display": null,
|
273 |
"error": null,
|
|
|
274 |
"meta": {
|
|
|
275 |
"name": "Input chat",
|
276 |
"params": {
|
277 |
"chat": {
|
@@ -285,25 +290,24 @@
|
|
285 |
"inputs": {},
|
286 |
"outputs": {
|
287 |
"output": {
|
288 |
-
"
|
289 |
"type": {
|
290 |
"type": "None"
|
291 |
},
|
292 |
-
"
|
293 |
}
|
294 |
-
}
|
295 |
-
"type": "basic",
|
296 |
-
"sub_nodes": null
|
297 |
},
|
|
|
298 |
"beingResized": false
|
299 |
},
|
300 |
"position": {
|
301 |
-
"x": -
|
302 |
-
"y":
|
303 |
},
|
304 |
"parentId": null,
|
305 |
-
"width":
|
306 |
-
"height":
|
307 |
},
|
308 |
{
|
309 |
"id": "Create prompt 1",
|
@@ -311,56 +315,59 @@
|
|
311 |
"data": {
|
312 |
"title": "Create prompt",
|
313 |
"params": {
|
314 |
-
"
|
315 |
-
"
|
316 |
},
|
317 |
"display": null,
|
318 |
"error": null,
|
|
|
|
|
319 |
"meta": {
|
320 |
"name": "Create prompt",
|
321 |
-
"params": {
|
322 |
-
"save_as": {
|
323 |
-
"name": "save_as",
|
324 |
-
"default": "prompt",
|
325 |
-
"type": {
|
326 |
-
"type": "<class 'str'>"
|
327 |
-
}
|
328 |
-
},
|
329 |
-
"template": {
|
330 |
-
"name": "template",
|
331 |
-
"default": null,
|
332 |
-
"type": {
|
333 |
-
"format": "textarea"
|
334 |
-
}
|
335 |
-
}
|
336 |
-
},
|
337 |
"inputs": {
|
338 |
"input": {
|
339 |
-
"
|
340 |
"type": {
|
341 |
"type": "<class 'inspect._empty'>"
|
342 |
},
|
343 |
-
"
|
344 |
}
|
345 |
},
|
346 |
"outputs": {
|
347 |
"output": {
|
348 |
"name": "output",
|
|
|
349 |
"type": {
|
350 |
"type": "None"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
},
|
352 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
}
|
354 |
},
|
355 |
-
"type": "basic"
|
356 |
-
"sub_nodes": null
|
357 |
}
|
358 |
},
|
359 |
"position": {
|
360 |
"x": 324.81988008998496,
|
361 |
"y": -9.071826950189632
|
362 |
},
|
363 |
-
"
|
|
|
|
|
364 |
},
|
365 |
{
|
366 |
"id": "RAG 1",
|
@@ -369,8 +376,8 @@
|
|
369 |
"title": "RAG",
|
370 |
"params": {
|
371 |
"engine": "Custom",
|
372 |
-
"input_field": "text",
|
373 |
"db_field": "text",
|
|
|
374 |
"num_matches": "1"
|
375 |
},
|
376 |
"display": null,
|
@@ -378,16 +385,6 @@
|
|
378 |
"meta": {
|
379 |
"name": "RAG",
|
380 |
"params": {
|
381 |
-
"engine": {
|
382 |
-
"name": "engine",
|
383 |
-
"default": "Chroma",
|
384 |
-
"type": {
|
385 |
-
"enum": [
|
386 |
-
"Chroma",
|
387 |
-
"Custom"
|
388 |
-
]
|
389 |
-
}
|
390 |
-
},
|
391 |
"input_field": {
|
392 |
"name": "input_field",
|
393 |
"default": "text",
|
@@ -402,20 +399,39 @@
|
|
402 |
"type": "<class 'str'>"
|
403 |
}
|
404 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
"num_matches": {
|
406 |
-
"name": "num_matches",
|
407 |
-
"default": 10,
|
408 |
"type": {
|
409 |
"type": "<class 'int'>"
|
410 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
}
|
412 |
},
|
413 |
"inputs": {
|
414 |
"input": {
|
415 |
-
"name": "input",
|
416 |
"type": {
|
417 |
"type": "<class 'inspect._empty'>"
|
418 |
},
|
|
|
419 |
"position": "left"
|
420 |
},
|
421 |
"db": {
|
@@ -426,24 +442,16 @@
|
|
426 |
"position": "top"
|
427 |
}
|
428 |
},
|
429 |
-
"
|
430 |
-
"output": {
|
431 |
-
"name": "output",
|
432 |
-
"type": {
|
433 |
-
"type": "None"
|
434 |
-
},
|
435 |
-
"position": "right"
|
436 |
-
}
|
437 |
-
},
|
438 |
-
"type": "basic",
|
439 |
-
"sub_nodes": null
|
440 |
}
|
441 |
},
|
442 |
"position": {
|
443 |
-
"x": -
|
444 |
-
"y":
|
445 |
},
|
446 |
-
"parentId": null
|
|
|
|
|
447 |
},
|
448 |
{
|
449 |
"id": "View 3",
|
@@ -470,31 +478,30 @@
|
|
470 |
}
|
471 |
},
|
472 |
"error": null,
|
|
|
473 |
"meta": {
|
474 |
"name": "View",
|
475 |
"params": {},
|
476 |
"inputs": {
|
477 |
"input": {
|
478 |
-
"name": "input",
|
479 |
"type": {
|
480 |
"type": "<class 'inspect._empty'>"
|
481 |
},
|
482 |
-
"position": "left"
|
|
|
483 |
}
|
484 |
},
|
485 |
"outputs": {},
|
486 |
-
"type": "table_view"
|
487 |
-
|
488 |
-
},
|
489 |
-
"beingResized": false
|
490 |
},
|
491 |
"position": {
|
492 |
-
"x": -
|
493 |
-
"y":
|
494 |
},
|
495 |
"parentId": null,
|
496 |
-
"width": 296,
|
497 |
-
"height": 228
|
498 |
},
|
499 |
{
|
500 |
"id": "Ask LLM 1",
|
@@ -502,63 +509,66 @@
|
|
502 |
"data": {
|
503 |
"title": "Ask LLM",
|
504 |
"params": {
|
505 |
-
"
|
506 |
-
"accepted_regex":
|
507 |
-
"
|
508 |
},
|
509 |
"display": null,
|
510 |
"error": null,
|
|
|
|
|
511 |
"meta": {
|
512 |
-
"
|
513 |
-
|
514 |
-
|
515 |
-
"name": "
|
516 |
-
"default": null,
|
517 |
"type": {
|
518 |
-
"type": "<class '
|
519 |
}
|
520 |
-
}
|
|
|
|
|
521 |
"accepted_regex": {
|
522 |
-
"name": "accepted_regex",
|
523 |
-
"default": null,
|
524 |
"type": {
|
525 |
"type": "<class 'str'>"
|
526 |
-
}
|
|
|
|
|
527 |
},
|
528 |
"max_tokens": {
|
529 |
"name": "max_tokens",
|
530 |
-
"default": 100,
|
531 |
"type": {
|
532 |
"type": "<class 'int'>"
|
533 |
}
|
534 |
-
}
|
535 |
-
|
536 |
-
"inputs": {
|
537 |
-
"input": {
|
538 |
-
"name": "input",
|
539 |
"type": {
|
540 |
-
"type": "<class '
|
541 |
},
|
542 |
-
"
|
|
|
543 |
}
|
544 |
},
|
545 |
"outputs": {
|
546 |
"output": {
|
547 |
-
"name": "output",
|
548 |
"type": {
|
549 |
"type": "None"
|
550 |
},
|
551 |
-
"position": "right"
|
|
|
552 |
}
|
553 |
},
|
554 |
-
"
|
555 |
-
"
|
556 |
}
|
557 |
},
|
558 |
"position": {
|
559 |
"x": 649.0730411878703,
|
560 |
"y": 29.290926423828694
|
561 |
},
|
|
|
|
|
562 |
"parentId": null
|
563 |
},
|
564 |
{
|
@@ -585,7 +595,7 @@
|
|
585 |
"Available options: Coke, Diet Coke, Sprite, Root Beer, Lemonade."
|
586 |
],
|
587 |
"\n\n---\n### 6. **Drinks**\n\n---\n| Size | Price |\n|--------------------|---------------|\n| 20 oz Bottle | $1.99 |\n| 2-Liter Bottle | $3.50 |\n\n---\nAvailable options: Coke, Diet Coke, Sprite, Root Beer, Lemonade.\n\n---\nIs the information above sufficient to answer the following question?\n- What's your cheapest drink?\n\nIf the information is insufficient please say so. Otherwise, provide the answer.",
|
588 |
-
"The information is sufficient to answer the question
|
589 |
]
|
590 |
]
|
591 |
}
|
@@ -593,27 +603,28 @@
|
|
593 |
},
|
594 |
"error": null,
|
595 |
"meta": {
|
596 |
-
"
|
|
|
597 |
"params": {},
|
598 |
"inputs": {
|
599 |
"input": {
|
600 |
-
"
|
601 |
"type": {
|
602 |
"type": "<class 'inspect._empty'>"
|
603 |
},
|
604 |
-
"
|
605 |
}
|
606 |
},
|
607 |
-
"
|
608 |
-
"type": "table_view",
|
609 |
-
"sub_nodes": null
|
610 |
}
|
611 |
},
|
612 |
"position": {
|
613 |
-
"x":
|
614 |
-
"y": -
|
615 |
},
|
616 |
-
"
|
|
|
|
|
617 |
},
|
618 |
{
|
619 |
"id": "Build document graph 1",
|
@@ -623,37 +634,38 @@
|
|
623 |
"params": {},
|
624 |
"display": null,
|
625 |
"error": null,
|
|
|
626 |
"meta": {
|
627 |
"name": "Build document graph",
|
628 |
"params": {},
|
629 |
-
"inputs": {
|
630 |
-
"input": {
|
631 |
-
"name": "input",
|
632 |
-
"type": {
|
633 |
-
"type": "<class 'inspect._empty'>"
|
634 |
-
},
|
635 |
-
"position": "top"
|
636 |
-
}
|
637 |
-
},
|
638 |
"outputs": {
|
639 |
"output": {
|
640 |
"name": "output",
|
|
|
641 |
"type": {
|
642 |
"type": "None"
|
643 |
-
}
|
644 |
-
"position": "right"
|
645 |
}
|
646 |
},
|
647 |
-
"
|
648 |
-
|
649 |
-
|
650 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
},
|
652 |
"position": {
|
653 |
"x": -36.39166052931119,
|
654 |
"y": -212.34993098590766
|
655 |
},
|
656 |
-
"
|
|
|
|
|
657 |
},
|
658 |
{
|
659 |
"id": "Add neighbors 1",
|
@@ -664,42 +676,41 @@
|
|
664 |
"display": null,
|
665 |
"error": null,
|
666 |
"meta": {
|
667 |
-
"
|
668 |
-
"params": {},
|
669 |
"inputs": {
|
670 |
"nodes": {
|
671 |
-
"name": "nodes",
|
672 |
"type": {
|
673 |
"type": "<class 'inspect._empty'>"
|
674 |
},
|
|
|
675 |
"position": "top"
|
676 |
},
|
677 |
-
"
|
678 |
-
"
|
|
|
679 |
"type": {
|
680 |
"type": "<class 'inspect._empty'>"
|
681 |
-
}
|
682 |
-
"position": "top"
|
683 |
},
|
684 |
-
"
|
685 |
-
"name": "
|
|
|
686 |
"type": {
|
687 |
"type": "<class 'inspect._empty'>"
|
688 |
-
}
|
689 |
-
"position": "left"
|
690 |
}
|
691 |
},
|
|
|
|
|
692 |
"outputs": {
|
693 |
"output": {
|
|
|
694 |
"name": "output",
|
695 |
"type": {
|
696 |
"type": "None"
|
697 |
-
}
|
698 |
-
"position": "right"
|
699 |
}
|
700 |
-
}
|
701 |
-
"type": "basic",
|
702 |
-
"sub_nodes": null
|
703 |
},
|
704 |
"collapsed": true
|
705 |
},
|
@@ -707,7 +718,9 @@
|
|
707 |
"x": -2.516468588848724,
|
708 |
"y": 167.64180115746848
|
709 |
},
|
710 |
-
"parentId": null
|
|
|
|
|
711 |
},
|
712 |
{
|
713 |
"id": "Predict links 1",
|
@@ -717,25 +730,26 @@
|
|
717 |
"params": {},
|
718 |
"display": null,
|
719 |
"error": null,
|
|
|
720 |
"meta": {
|
721 |
"name": "Predict links",
|
722 |
-
"params": {},
|
723 |
"inputs": {
|
724 |
-
"
|
725 |
-
"name": "nodes",
|
726 |
"type": {
|
727 |
"type": "<class 'inspect._empty'>"
|
728 |
},
|
|
|
729 |
"position": "top"
|
730 |
},
|
731 |
-
"
|
732 |
-
"name": "
|
|
|
733 |
"type": {
|
734 |
"type": "<class 'inspect._empty'>"
|
735 |
-
}
|
736 |
-
"position": "top"
|
737 |
}
|
738 |
},
|
|
|
739 |
"outputs": {
|
740 |
"output": {
|
741 |
"name": "output",
|
@@ -745,17 +759,16 @@
|
|
745 |
"position": "right"
|
746 |
}
|
747 |
},
|
748 |
-
"
|
749 |
-
|
750 |
-
|
751 |
-
"y": 179
|
752 |
-
}
|
753 |
-
}
|
754 |
},
|
755 |
"position": {
|
756 |
"x": 34.865308360949726,
|
757 |
"y": -37.44504613652989
|
758 |
},
|
|
|
|
|
759 |
"parentId": null
|
760 |
}
|
761 |
],
|
|
|
7 |
"data": {
|
8 |
"title": "Input document",
|
9 |
"params": {
|
10 |
+
"filename": "data/example-pizza.md"
|
11 |
},
|
12 |
"display": null,
|
13 |
"error": null,
|
14 |
+
"__execution_delay": 0.0,
|
15 |
"meta": {
|
16 |
+
"type": "basic",
|
17 |
"params": {
|
18 |
"filename": {
|
|
|
|
|
19 |
"type": {
|
20 |
"format": "path"
|
21 |
+
},
|
22 |
+
"name": "filename",
|
23 |
+
"default": null
|
24 |
}
|
25 |
},
|
26 |
"inputs": {},
|
27 |
+
"name": "Input document",
|
28 |
"outputs": {
|
29 |
"output": {
|
30 |
"name": "output",
|
|
|
33 |
},
|
34 |
"position": "right"
|
35 |
}
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"collapsed": null
|
|
|
39 |
},
|
40 |
"position": {
|
41 |
+
"x": -1138.7178641442829,
|
42 |
+
"y": -307.0280242240266
|
43 |
},
|
44 |
+
"parentId": null,
|
45 |
+
"width": 290.0,
|
46 |
+
"height": 217.0
|
47 |
},
|
48 |
{
|
49 |
"id": "View 1",
|
|
|
191 |
"error": null,
|
192 |
"meta": {
|
193 |
"name": "View",
|
|
|
194 |
"inputs": {
|
195 |
"input": {
|
196 |
"name": "input",
|
|
|
201 |
}
|
202 |
},
|
203 |
"outputs": {},
|
204 |
+
"params": {},
|
205 |
+
"type": "table_view"
|
206 |
},
|
207 |
"beingResized": false
|
208 |
},
|
|
|
211 |
"y": -562.3096858852143
|
212 |
},
|
213 |
"parentId": null,
|
214 |
+
"width": 909.0,
|
215 |
+
"height": 367.0
|
216 |
},
|
217 |
{
|
218 |
"id": "Split document 1",
|
|
|
225 |
"display": null,
|
226 |
"error": null,
|
227 |
"meta": {
|
|
|
228 |
"params": {
|
229 |
"delimiter": {
|
230 |
"name": "delimiter",
|
|
|
231 |
"type": {
|
232 |
"type": "<class 'str'>"
|
233 |
+
},
|
234 |
+
"default": "\\n\\n"
|
235 |
}
|
236 |
},
|
237 |
+
"type": "basic",
|
238 |
"inputs": {
|
239 |
"input": {
|
|
|
240 |
"type": {
|
241 |
"type": "<class 'inspect._empty'>"
|
242 |
},
|
243 |
+
"position": "left",
|
244 |
+
"name": "input"
|
245 |
}
|
246 |
},
|
247 |
+
"name": "Split document",
|
248 |
"outputs": {
|
249 |
"output": {
|
250 |
"name": "output",
|
|
|
253 |
},
|
254 |
"position": "right"
|
255 |
}
|
256 |
+
}
|
|
|
|
|
257 |
}
|
258 |
},
|
259 |
"position": {
|
260 |
+
"x": -671.5138580866221,
|
261 |
+
"y": -394.5831190981944
|
262 |
},
|
263 |
+
"parentId": null,
|
264 |
+
"height": 200.0,
|
265 |
+
"width": 200.0
|
266 |
},
|
267 |
{
|
268 |
"id": "Input chat 1",
|
|
|
274 |
},
|
275 |
"display": null,
|
276 |
"error": null,
|
277 |
+
"__execution_delay": 0.0,
|
278 |
"meta": {
|
279 |
+
"type": "basic",
|
280 |
"name": "Input chat",
|
281 |
"params": {
|
282 |
"chat": {
|
|
|
290 |
"inputs": {},
|
291 |
"outputs": {
|
292 |
"output": {
|
293 |
+
"position": "right",
|
294 |
"type": {
|
295 |
"type": "None"
|
296 |
},
|
297 |
+
"name": "output"
|
298 |
}
|
299 |
+
}
|
|
|
|
|
300 |
},
|
301 |
+
"collapsed": null,
|
302 |
"beingResized": false
|
303 |
},
|
304 |
"position": {
|
305 |
+
"x": -1169.0221491975267,
|
306 |
+
"y": 142.6860253469853
|
307 |
},
|
308 |
"parentId": null,
|
309 |
+
"width": 347.0,
|
310 |
+
"height": 197.0
|
311 |
},
|
312 |
{
|
313 |
"id": "Create prompt 1",
|
|
|
315 |
"data": {
|
316 |
"title": "Create prompt",
|
317 |
"params": {
|
318 |
+
"template": "\n{% for item in rag %}\n---\n{{item}}\n{% endfor %}\n---\nIs the information above sufficient to answer the following question?\n- {{text}}\n\nIf the information is insufficient please say so. Otherwise, provide the answer.",
|
319 |
+
"save_as": "prompt"
|
320 |
},
|
321 |
"display": null,
|
322 |
"error": null,
|
323 |
+
"collapsed": null,
|
324 |
+
"__execution_delay": 0.0,
|
325 |
"meta": {
|
326 |
"name": "Create prompt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
"inputs": {
|
328 |
"input": {
|
329 |
+
"position": "left",
|
330 |
"type": {
|
331 |
"type": "<class 'inspect._empty'>"
|
332 |
},
|
333 |
+
"name": "input"
|
334 |
}
|
335 |
},
|
336 |
"outputs": {
|
337 |
"output": {
|
338 |
"name": "output",
|
339 |
+
"position": "right",
|
340 |
"type": {
|
341 |
"type": "None"
|
342 |
+
}
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"params": {
|
346 |
+
"save_as": {
|
347 |
+
"type": {
|
348 |
+
"type": "<class 'str'>"
|
349 |
},
|
350 |
+
"default": "prompt",
|
351 |
+
"name": "save_as"
|
352 |
+
},
|
353 |
+
"template": {
|
354 |
+
"default": null,
|
355 |
+
"type": {
|
356 |
+
"format": "textarea"
|
357 |
+
},
|
358 |
+
"name": "template"
|
359 |
}
|
360 |
},
|
361 |
+
"type": "basic"
|
|
|
362 |
}
|
363 |
},
|
364 |
"position": {
|
365 |
"x": 324.81988008998496,
|
366 |
"y": -9.071826950189632
|
367 |
},
|
368 |
+
"height": 362.0,
|
369 |
+
"parentId": null,
|
370 |
+
"width": 270.0
|
371 |
},
|
372 |
{
|
373 |
"id": "RAG 1",
|
|
|
376 |
"title": "RAG",
|
377 |
"params": {
|
378 |
"engine": "Custom",
|
|
|
379 |
"db_field": "text",
|
380 |
+
"input_field": "text",
|
381 |
"num_matches": "1"
|
382 |
},
|
383 |
"display": null,
|
|
|
385 |
"meta": {
|
386 |
"name": "RAG",
|
387 |
"params": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
"input_field": {
|
389 |
"name": "input_field",
|
390 |
"default": "text",
|
|
|
399 |
"type": "<class 'str'>"
|
400 |
}
|
401 |
},
|
402 |
+
"engine": {
|
403 |
+
"type": {
|
404 |
+
"enum": [
|
405 |
+
"Chroma",
|
406 |
+
"Custom"
|
407 |
+
]
|
408 |
+
},
|
409 |
+
"name": "engine",
|
410 |
+
"default": "RagEngine.Chroma"
|
411 |
+
},
|
412 |
"num_matches": {
|
|
|
|
|
413 |
"type": {
|
414 |
"type": "<class 'int'>"
|
415 |
+
},
|
416 |
+
"name": "num_matches",
|
417 |
+
"default": 10.0
|
418 |
+
}
|
419 |
+
},
|
420 |
+
"outputs": {
|
421 |
+
"output": {
|
422 |
+
"name": "output",
|
423 |
+
"type": {
|
424 |
+
"type": "None"
|
425 |
+
},
|
426 |
+
"position": "right"
|
427 |
}
|
428 |
},
|
429 |
"inputs": {
|
430 |
"input": {
|
|
|
431 |
"type": {
|
432 |
"type": "<class 'inspect._empty'>"
|
433 |
},
|
434 |
+
"name": "input",
|
435 |
"position": "left"
|
436 |
},
|
437 |
"db": {
|
|
|
442 |
"position": "top"
|
443 |
}
|
444 |
},
|
445 |
+
"type": "basic"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
}
|
447 |
},
|
448 |
"position": {
|
449 |
+
"x": -645.0268659124858,
|
450 |
+
"y": 44.3669514323544
|
451 |
},
|
452 |
+
"parentId": null,
|
453 |
+
"width": 423.0,
|
454 |
+
"height": 424.0
|
455 |
},
|
456 |
{
|
457 |
"id": "View 3",
|
|
|
478 |
}
|
479 |
},
|
480 |
"error": null,
|
481 |
+
"beingResized": false,
|
482 |
"meta": {
|
483 |
"name": "View",
|
484 |
"params": {},
|
485 |
"inputs": {
|
486 |
"input": {
|
|
|
487 |
"type": {
|
488 |
"type": "<class 'inspect._empty'>"
|
489 |
},
|
490 |
+
"position": "left",
|
491 |
+
"name": "input"
|
492 |
}
|
493 |
},
|
494 |
"outputs": {},
|
495 |
+
"type": "table_view"
|
496 |
+
}
|
|
|
|
|
497 |
},
|
498 |
"position": {
|
499 |
+
"x": -43.795911596608875,
|
500 |
+
"y": 457.1809102819045
|
501 |
},
|
502 |
"parentId": null,
|
503 |
+
"width": 296.0,
|
504 |
+
"height": 228.0
|
505 |
},
|
506 |
{
|
507 |
"id": "Ask LLM 1",
|
|
|
509 |
"data": {
|
510 |
"title": "Ask LLM",
|
511 |
"params": {
|
512 |
+
"max_tokens": 100.0,
|
513 |
+
"accepted_regex": "",
|
514 |
+
"model": "SultanR/SmolTulu-1.7b-Instruct"
|
515 |
},
|
516 |
"display": null,
|
517 |
"error": null,
|
518 |
+
"collapsed": null,
|
519 |
+
"__execution_delay": 0.0,
|
520 |
"meta": {
|
521 |
+
"inputs": {
|
522 |
+
"input": {
|
523 |
+
"position": "left",
|
524 |
+
"name": "input",
|
|
|
525 |
"type": {
|
526 |
+
"type": "<class 'inspect._empty'>"
|
527 |
}
|
528 |
+
}
|
529 |
+
},
|
530 |
+
"params": {
|
531 |
"accepted_regex": {
|
|
|
|
|
532 |
"type": {
|
533 |
"type": "<class 'str'>"
|
534 |
+
},
|
535 |
+
"default": null,
|
536 |
+
"name": "accepted_regex"
|
537 |
},
|
538 |
"max_tokens": {
|
539 |
"name": "max_tokens",
|
540 |
+
"default": 100.0,
|
541 |
"type": {
|
542 |
"type": "<class 'int'>"
|
543 |
}
|
544 |
+
},
|
545 |
+
"model": {
|
|
|
|
|
|
|
546 |
"type": {
|
547 |
+
"type": "<class 'str'>"
|
548 |
},
|
549 |
+
"default": null,
|
550 |
+
"name": "model"
|
551 |
}
|
552 |
},
|
553 |
"outputs": {
|
554 |
"output": {
|
|
|
555 |
"type": {
|
556 |
"type": "None"
|
557 |
},
|
558 |
+
"position": "right",
|
559 |
+
"name": "output"
|
560 |
}
|
561 |
},
|
562 |
+
"name": "Ask LLM",
|
563 |
+
"type": "basic"
|
564 |
}
|
565 |
},
|
566 |
"position": {
|
567 |
"x": 649.0730411878703,
|
568 |
"y": 29.290926423828694
|
569 |
},
|
570 |
+
"height": 329.0,
|
571 |
+
"width": 249.0,
|
572 |
"parentId": null
|
573 |
},
|
574 |
{
|
|
|
595 |
"Available options: Coke, Diet Coke, Sprite, Root Beer, Lemonade."
|
596 |
],
|
597 |
"\n\n---\n### 6. **Drinks**\n\n---\n| Size | Price |\n|--------------------|---------------|\n| 20 oz Bottle | $1.99 |\n| 2-Liter Bottle | $3.50 |\n\n---\nAvailable options: Coke, Diet Coke, Sprite, Root Beer, Lemonade.\n\n---\nIs the information above sufficient to answer the following question?\n- What's your cheapest drink?\n\nIf the information is insufficient please say so. Otherwise, provide the answer.",
|
598 |
+
"The provided information is sufficient to answer the question:\n\n- **Cheapest Drink:** \n\nThe cheapest drink is the 20 oz Bottle of Coke, which costs $1.99.\n\n**Why?**\n- The 20 oz Bottle of Coke is the only option listed with a price of $1.99, making it the most cost-effective option among the given drink sizes and prices."
|
599 |
]
|
600 |
]
|
601 |
}
|
|
|
603 |
},
|
604 |
"error": null,
|
605 |
"meta": {
|
606 |
+
"outputs": {},
|
607 |
+
"type": "table_view",
|
608 |
"params": {},
|
609 |
"inputs": {
|
610 |
"input": {
|
611 |
+
"position": "left",
|
612 |
"type": {
|
613 |
"type": "<class 'inspect._empty'>"
|
614 |
},
|
615 |
+
"name": "input"
|
616 |
}
|
617 |
},
|
618 |
+
"name": "View"
|
|
|
|
|
619 |
}
|
620 |
},
|
621 |
"position": {
|
622 |
+
"x": 1017.4149773467798,
|
623 |
+
"y": -71.64715104646865
|
624 |
},
|
625 |
+
"height": 644.0,
|
626 |
+
"parentId": null,
|
627 |
+
"width": 502.0
|
628 |
},
|
629 |
{
|
630 |
"id": "Build document graph 1",
|
|
|
634 |
"params": {},
|
635 |
"display": null,
|
636 |
"error": null,
|
637 |
+
"collapsed": true,
|
638 |
"meta": {
|
639 |
"name": "Build document graph",
|
640 |
"params": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
"outputs": {
|
642 |
"output": {
|
643 |
"name": "output",
|
644 |
+
"position": "right",
|
645 |
"type": {
|
646 |
"type": "None"
|
647 |
+
}
|
|
|
648 |
}
|
649 |
},
|
650 |
+
"inputs": {
|
651 |
+
"input": {
|
652 |
+
"position": "top",
|
653 |
+
"name": "input",
|
654 |
+
"type": {
|
655 |
+
"type": "<class 'inspect._empty'>"
|
656 |
+
}
|
657 |
+
}
|
658 |
+
},
|
659 |
+
"type": "basic"
|
660 |
+
}
|
661 |
},
|
662 |
"position": {
|
663 |
"x": -36.39166052931119,
|
664 |
"y": -212.34993098590766
|
665 |
},
|
666 |
+
"width": 200.0,
|
667 |
+
"parentId": null,
|
668 |
+
"height": 80.0
|
669 |
},
|
670 |
{
|
671 |
"id": "Add neighbors 1",
|
|
|
676 |
"display": null,
|
677 |
"error": null,
|
678 |
"meta": {
|
679 |
+
"type": "basic",
|
|
|
680 |
"inputs": {
|
681 |
"nodes": {
|
|
|
682 |
"type": {
|
683 |
"type": "<class 'inspect._empty'>"
|
684 |
},
|
685 |
+
"name": "nodes",
|
686 |
"position": "top"
|
687 |
},
|
688 |
+
"item": {
|
689 |
+
"position": "left",
|
690 |
+
"name": "item",
|
691 |
"type": {
|
692 |
"type": "<class 'inspect._empty'>"
|
693 |
+
}
|
|
|
694 |
},
|
695 |
+
"edges": {
|
696 |
+
"name": "edges",
|
697 |
+
"position": "top",
|
698 |
"type": {
|
699 |
"type": "<class 'inspect._empty'>"
|
700 |
+
}
|
|
|
701 |
}
|
702 |
},
|
703 |
+
"params": {},
|
704 |
+
"name": "Add neighbors",
|
705 |
"outputs": {
|
706 |
"output": {
|
707 |
+
"position": "right",
|
708 |
"name": "output",
|
709 |
"type": {
|
710 |
"type": "None"
|
711 |
+
}
|
|
|
712 |
}
|
713 |
+
}
|
|
|
|
|
714 |
},
|
715 |
"collapsed": true
|
716 |
},
|
|
|
718 |
"x": -2.516468588848724,
|
719 |
"y": 167.64180115746848
|
720 |
},
|
721 |
+
"parentId": null,
|
722 |
+
"height": 56.0,
|
723 |
+
"width": 200.0
|
724 |
},
|
725 |
{
|
726 |
"id": "Predict links 1",
|
|
|
730 |
"params": {},
|
731 |
"display": null,
|
732 |
"error": null,
|
733 |
+
"__execution_delay": null,
|
734 |
"meta": {
|
735 |
"name": "Predict links",
|
|
|
736 |
"inputs": {
|
737 |
+
"edges": {
|
|
|
738 |
"type": {
|
739 |
"type": "<class 'inspect._empty'>"
|
740 |
},
|
741 |
+
"name": "edges",
|
742 |
"position": "top"
|
743 |
},
|
744 |
+
"nodes": {
|
745 |
+
"name": "nodes",
|
746 |
+
"position": "top",
|
747 |
"type": {
|
748 |
"type": "<class 'inspect._empty'>"
|
749 |
+
}
|
|
|
750 |
}
|
751 |
},
|
752 |
+
"type": "basic",
|
753 |
"outputs": {
|
754 |
"output": {
|
755 |
"name": "output",
|
|
|
759 |
"position": "right"
|
760 |
}
|
761 |
},
|
762 |
+
"params": {}
|
763 |
+
},
|
764 |
+
"collapsed": true
|
|
|
|
|
|
|
765 |
},
|
766 |
"position": {
|
767 |
"x": 34.865308360949726,
|
768 |
"y": -37.44504613652989
|
769 |
},
|
770 |
+
"height": 200.0,
|
771 |
+
"width": 200.0,
|
772 |
"parentId": null
|
773 |
}
|
774 |
],
|
lynxkite-app/data/Image processing
CHANGED
@@ -7,22 +7,11 @@
|
|
7 |
"data": {
|
8 |
"title": "Open image",
|
9 |
"params": {
|
10 |
-
"filename": "/
|
11 |
},
|
12 |
"display": null,
|
13 |
"error": null,
|
14 |
"meta": {
|
15 |
-
"name": "Open image",
|
16 |
-
"params": {
|
17 |
-
"filename": {
|
18 |
-
"name": "filename",
|
19 |
-
"default": null,
|
20 |
-
"type": {
|
21 |
-
"type": "<class 'str'>"
|
22 |
-
}
|
23 |
-
}
|
24 |
-
},
|
25 |
-
"inputs": {},
|
26 |
"outputs": {
|
27 |
"output": {
|
28 |
"name": "output",
|
@@ -32,15 +21,29 @@
|
|
32 |
"position": "right"
|
33 |
}
|
34 |
},
|
35 |
-
"
|
36 |
-
"
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
},
|
39 |
"position": {
|
40 |
-
"x":
|
41 |
-
"y":
|
42 |
},
|
43 |
-
"
|
|
|
|
|
44 |
},
|
45 |
{
|
46 |
"id": "View image 1",
|
@@ -48,30 +51,31 @@
|
|
48 |
"data": {
|
49 |
"title": "View image",
|
50 |
"params": {},
|
51 |
-
"display": "",
|
52 |
"error": null,
|
53 |
"meta": {
|
54 |
-
"
|
55 |
-
"
|
56 |
"inputs": {
|
57 |
"image": {
|
58 |
"name": "image",
|
59 |
"type": {
|
60 |
-
"type": "<module 'PIL.Image' from '/
|
61 |
},
|
62 |
"position": "left"
|
63 |
}
|
64 |
},
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"sub_nodes": null
|
68 |
}
|
69 |
},
|
70 |
"position": {
|
71 |
"x": 371.2152385614552,
|
72 |
"y": -243.68185336918702
|
73 |
},
|
74 |
-
"parentId": null
|
|
|
|
|
75 |
},
|
76 |
{
|
77 |
"id": "Flip verically 1",
|
@@ -82,35 +86,38 @@
|
|
82 |
"display": null,
|
83 |
"error": null,
|
84 |
"meta": {
|
85 |
-
"name": "Flip verically",
|
86 |
-
"params": {},
|
87 |
-
"inputs": {
|
88 |
-
"image": {
|
89 |
-
"name": "image",
|
90 |
-
"type": {
|
91 |
-
"type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
|
92 |
-
},
|
93 |
-
"position": "left"
|
94 |
-
}
|
95 |
-
},
|
96 |
"outputs": {
|
97 |
"output": {
|
|
|
98 |
"name": "output",
|
99 |
"type": {
|
100 |
"type": "None"
|
101 |
-
}
|
102 |
-
"position": "right"
|
103 |
}
|
104 |
},
|
105 |
"type": "basic",
|
106 |
-
"
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
},
|
109 |
"position": {
|
110 |
-
"x":
|
111 |
-
"y":
|
112 |
},
|
113 |
-
"
|
|
|
|
|
114 |
},
|
115 |
{
|
116 |
"id": "View image 2",
|
@@ -118,29 +125,30 @@
|
|
118 |
"data": {
|
119 |
"title": "View image",
|
120 |
"params": {},
|
121 |
-
"display": "",
|
122 |
"error": null,
|
123 |
"meta": {
|
124 |
-
"
|
125 |
-
"params": {},
|
126 |
"inputs": {
|
127 |
"image": {
|
128 |
-
"
|
129 |
"type": {
|
130 |
-
"type": "<module 'PIL.Image' from '/
|
131 |
},
|
132 |
-
"
|
133 |
}
|
134 |
},
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
}
|
139 |
},
|
140 |
"position": {
|
141 |
"x": 1027.1387925400982,
|
142 |
"y": 251.36630333493974
|
143 |
},
|
|
|
|
|
144 |
"parentId": null
|
145 |
},
|
146 |
{
|
@@ -151,36 +159,39 @@
|
|
151 |
"params": {},
|
152 |
"display": null,
|
153 |
"error": null,
|
|
|
|
|
154 |
"meta": {
|
155 |
-
"
|
156 |
"params": {},
|
157 |
-
"inputs": {
|
158 |
-
"image": {
|
159 |
-
"name": "image",
|
160 |
-
"type": {
|
161 |
-
"type": "<module 'PIL.Image' from '/opt/miniconda3/lib/python3.12/site-packages/PIL/Image.py'>"
|
162 |
-
},
|
163 |
-
"position": "left"
|
164 |
-
}
|
165 |
-
},
|
166 |
"outputs": {
|
167 |
"output": {
|
168 |
-
"name": "output",
|
169 |
"type": {
|
170 |
"type": "None"
|
171 |
},
|
172 |
-
"position": "right"
|
|
|
173 |
}
|
174 |
},
|
175 |
-
"
|
176 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
}
|
178 |
},
|
179 |
"position": {
|
180 |
"x": 826.1911193192234,
|
181 |
"y": 579.1542134884979
|
182 |
},
|
183 |
-
"parentId": null
|
|
|
|
|
184 |
},
|
185 |
{
|
186 |
"id": "Blur 1",
|
@@ -193,11 +204,11 @@
|
|
193 |
"display": null,
|
194 |
"error": null,
|
195 |
"meta": {
|
196 |
-
"
|
197 |
"params": {
|
198 |
"radius": {
|
|
|
199 |
"name": "radius",
|
200 |
-
"default": null,
|
201 |
"type": {
|
202 |
"type": "<class 'float'>"
|
203 |
}
|
@@ -207,11 +218,12 @@
|
|
207 |
"image": {
|
208 |
"name": "image",
|
209 |
"type": {
|
210 |
-
"type": "<module 'PIL.Image' from '/
|
211 |
},
|
212 |
"position": "left"
|
213 |
}
|
214 |
},
|
|
|
215 |
"outputs": {
|
216 |
"output": {
|
217 |
"name": "output",
|
@@ -220,16 +232,16 @@
|
|
220 |
},
|
221 |
"position": "right"
|
222 |
}
|
223 |
-
}
|
224 |
-
"type": "basic",
|
225 |
-
"sub_nodes": null
|
226 |
}
|
227 |
},
|
228 |
"position": {
|
229 |
"x": 505.15961556359304,
|
230 |
"y": 539.8477981917164
|
231 |
},
|
232 |
-
"parentId": null
|
|
|
|
|
233 |
}
|
234 |
],
|
235 |
"edges": [
|
|
|
7 |
"data": {
|
8 |
"title": "Open image",
|
9 |
"params": {
|
10 |
+
"filename": "https://media.licdn.com/dms/image/v2/C4E03AQEq4tdJKQiNHQ/profile-displayphoto-shrink_200_200/profile-displayphoto-shrink_200_200/0/1657270040827?e=2147483647&v=beta&t=lDxix0_0-_K7NUFqgPdzxY5-P7f73bWpPS_XRre842c"
|
11 |
},
|
12 |
"display": null,
|
13 |
"error": null,
|
14 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"outputs": {
|
16 |
"output": {
|
17 |
"name": "output",
|
|
|
21 |
"position": "right"
|
22 |
}
|
23 |
},
|
24 |
+
"name": "Open image",
|
25 |
+
"inputs": {},
|
26 |
+
"params": {
|
27 |
+
"filename": {
|
28 |
+
"name": "filename",
|
29 |
+
"type": {
|
30 |
+
"type": "<class 'str'>"
|
31 |
+
},
|
32 |
+
"default": null
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"type": "basic"
|
36 |
+
},
|
37 |
+
"__execution_delay": 0.0,
|
38 |
+
"collapsed": null
|
39 |
},
|
40 |
"position": {
|
41 |
+
"x": -316.51795927908694,
|
42 |
+
"y": 122.80901061526373
|
43 |
},
|
44 |
+
"width": 422.0,
|
45 |
+
"parentId": null,
|
46 |
+
"height": 222.0
|
47 |
},
|
48 |
{
|
49 |
"id": "View image 1",
|
|
|
51 |
"data": {
|
52 |
"title": "View image",
|
53 |
"params": {},
|
54 |
+
"display": "",
|
55 |
"error": null,
|
56 |
"meta": {
|
57 |
+
"type": "image",
|
58 |
+
"outputs": {},
|
59 |
"inputs": {
|
60 |
"image": {
|
61 |
"name": "image",
|
62 |
"type": {
|
63 |
+
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
64 |
},
|
65 |
"position": "left"
|
66 |
}
|
67 |
},
|
68 |
+
"name": "View image",
|
69 |
+
"params": {}
|
|
|
70 |
}
|
71 |
},
|
72 |
"position": {
|
73 |
"x": 371.2152385614552,
|
74 |
"y": -243.68185336918702
|
75 |
},
|
76 |
+
"parentId": null,
|
77 |
+
"width": 265.0,
|
78 |
+
"height": 288.0
|
79 |
},
|
80 |
{
|
81 |
"id": "Flip verically 1",
|
|
|
86 |
"display": null,
|
87 |
"error": null,
|
88 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
"outputs": {
|
90 |
"output": {
|
91 |
+
"position": "right",
|
92 |
"name": "output",
|
93 |
"type": {
|
94 |
"type": "None"
|
95 |
+
}
|
|
|
96 |
}
|
97 |
},
|
98 |
"type": "basic",
|
99 |
+
"params": {},
|
100 |
+
"name": "Flip verically",
|
101 |
+
"inputs": {
|
102 |
+
"image": {
|
103 |
+
"name": "image",
|
104 |
+
"position": "left",
|
105 |
+
"type": {
|
106 |
+
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
107 |
+
}
|
108 |
+
}
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"collapsed": true,
|
112 |
+
"__execution_delay": null
|
113 |
},
|
114 |
"position": {
|
115 |
+
"x": 228.3853393986406,
|
116 |
+
"y": 245.68255477059915
|
117 |
},
|
118 |
+
"width": 200.0,
|
119 |
+
"parentId": null,
|
120 |
+
"height": 200.0
|
121 |
},
|
122 |
{
|
123 |
"id": "View image 2",
|
|
|
125 |
"data": {
|
126 |
"title": "View image",
|
127 |
"params": {},
|
128 |
+
"display": "",
|
129 |
"error": null,
|
130 |
"meta": {
|
131 |
+
"outputs": {},
|
|
|
132 |
"inputs": {
|
133 |
"image": {
|
134 |
+
"position": "left",
|
135 |
"type": {
|
136 |
+
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
137 |
},
|
138 |
+
"name": "image"
|
139 |
}
|
140 |
},
|
141 |
+
"name": "View image",
|
142 |
+
"params": {},
|
143 |
+
"type": "image"
|
144 |
}
|
145 |
},
|
146 |
"position": {
|
147 |
"x": 1027.1387925400982,
|
148 |
"y": 251.36630333493974
|
149 |
},
|
150 |
+
"width": 222.0,
|
151 |
+
"height": 291.0,
|
152 |
"parentId": null
|
153 |
},
|
154 |
{
|
|
|
159 |
"params": {},
|
160 |
"display": null,
|
161 |
"error": null,
|
162 |
+
"collapsed": true,
|
163 |
+
"__execution_delay": null,
|
164 |
"meta": {
|
165 |
+
"type": "basic",
|
166 |
"params": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
"outputs": {
|
168 |
"output": {
|
|
|
169 |
"type": {
|
170 |
"type": "None"
|
171 |
},
|
172 |
+
"position": "right",
|
173 |
+
"name": "output"
|
174 |
}
|
175 |
},
|
176 |
+
"name": "To grayscale",
|
177 |
+
"inputs": {
|
178 |
+
"image": {
|
179 |
+
"position": "left",
|
180 |
+
"type": {
|
181 |
+
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
182 |
+
},
|
183 |
+
"name": "image"
|
184 |
+
}
|
185 |
+
}
|
186 |
}
|
187 |
},
|
188 |
"position": {
|
189 |
"x": 826.1911193192234,
|
190 |
"y": 579.1542134884979
|
191 |
},
|
192 |
+
"parentId": null,
|
193 |
+
"width": 200.0,
|
194 |
+
"height": 200.0
|
195 |
},
|
196 |
{
|
197 |
"id": "Blur 1",
|
|
|
204 |
"display": null,
|
205 |
"error": null,
|
206 |
"meta": {
|
207 |
+
"type": "basic",
|
208 |
"params": {
|
209 |
"radius": {
|
210 |
+
"default": 5.0,
|
211 |
"name": "radius",
|
|
|
212 |
"type": {
|
213 |
"type": "<class 'float'>"
|
214 |
}
|
|
|
218 |
"image": {
|
219 |
"name": "image",
|
220 |
"type": {
|
221 |
+
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
222 |
},
|
223 |
"position": "left"
|
224 |
}
|
225 |
},
|
226 |
+
"name": "Blur",
|
227 |
"outputs": {
|
228 |
"output": {
|
229 |
"name": "output",
|
|
|
232 |
},
|
233 |
"position": "right"
|
234 |
}
|
235 |
+
}
|
|
|
|
|
236 |
}
|
237 |
},
|
238 |
"position": {
|
239 |
"x": 505.15961556359304,
|
240 |
"y": 539.8477981917164
|
241 |
},
|
242 |
+
"parentId": null,
|
243 |
+
"height": 200.0,
|
244 |
+
"width": 200.0
|
245 |
}
|
246 |
],
|
247 |
"edges": [
|
lynxkite-app/data/LynxScribe demo
CHANGED
@@ -7,41 +7,43 @@
|
|
7 |
"data": {
|
8 |
"title": "Input chat",
|
9 |
"params": {
|
10 |
-
"chat": "who is the
|
11 |
},
|
12 |
"display": null,
|
13 |
"error": null,
|
|
|
14 |
"meta": {
|
15 |
-
"outputs": {
|
16 |
-
"output": {
|
17 |
-
"type": {
|
18 |
-
"type": "None"
|
19 |
-
},
|
20 |
-
"position": "right",
|
21 |
-
"name": "output"
|
22 |
-
}
|
23 |
-
},
|
24 |
"inputs": {},
|
25 |
"params": {
|
26 |
"chat": {
|
|
|
27 |
"type": {
|
28 |
"type": "<class 'str'>"
|
29 |
},
|
30 |
-
"name": "chat"
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
},
|
34 |
"name": "Input chat",
|
35 |
"type": "basic"
|
36 |
-
}
|
|
|
37 |
},
|
38 |
"position": {
|
39 |
"x": -493.5496596237119,
|
40 |
"y": 20.90123252513356
|
41 |
},
|
42 |
"height": 186.0,
|
43 |
-
"
|
44 |
-
"
|
45 |
},
|
46 |
{
|
47 |
"id": "View 1",
|
@@ -57,7 +59,7 @@
|
|
57 |
],
|
58 |
"data": [
|
59 |
[
|
60 |
-
"
|
61 |
]
|
62 |
]
|
63 |
}
|
@@ -66,27 +68,27 @@
|
|
66 |
"error": null,
|
67 |
"meta": {
|
68 |
"type": "table_view",
|
69 |
-
"outputs": {},
|
70 |
-
"params": {},
|
71 |
"name": "View",
|
72 |
"inputs": {
|
73 |
"input": {
|
74 |
-
"position": "left",
|
75 |
"name": "input",
|
76 |
"type": {
|
77 |
"type": "<class 'inspect._empty'>"
|
78 |
-
}
|
|
|
79 |
}
|
80 |
-
}
|
|
|
|
|
81 |
}
|
82 |
},
|
83 |
"position": {
|
84 |
-
"x":
|
85 |
-
"y": -
|
86 |
},
|
87 |
-
"
|
88 |
"parentId": null,
|
89 |
-
"
|
90 |
},
|
91 |
{
|
92 |
"id": "LLM 1",
|
@@ -100,35 +102,35 @@
|
|
100 |
"error": null,
|
101 |
"meta": {
|
102 |
"inputs": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
"type": "basic",
|
104 |
-
"name": "LLM",
|
105 |
"params": {
|
106 |
"name": {
|
|
|
107 |
"name": "name",
|
108 |
"type": {
|
109 |
"type": "<class 'str'>"
|
110 |
-
}
|
111 |
-
"default": "openai"
|
112 |
}
|
113 |
},
|
114 |
-
"
|
115 |
-
"output": {
|
116 |
-
"name": "output",
|
117 |
-
"type": {
|
118 |
-
"type": "None"
|
119 |
-
},
|
120 |
-
"position": "top"
|
121 |
-
}
|
122 |
-
}
|
123 |
}
|
124 |
},
|
125 |
"position": {
|
126 |
"x": -312.5774211084781,
|
127 |
"y": 1093.4019527511366
|
128 |
},
|
129 |
-
"
|
130 |
"width": 200.0,
|
131 |
-
"
|
132 |
},
|
133 |
{
|
134 |
"id": "Scenario selector 1",
|
@@ -136,49 +138,49 @@
|
|
136 |
"data": {
|
137 |
"title": "Scenario selector",
|
138 |
"params": {
|
139 |
-
"
|
140 |
-
"
|
141 |
},
|
142 |
"display": null,
|
143 |
"error": null,
|
144 |
"meta": {
|
145 |
-
"type": "basic",
|
146 |
-
"name": "Scenario selector",
|
147 |
-
"inputs": {},
|
148 |
-
"outputs": {
|
149 |
-
"output": {
|
150 |
-
"type": {
|
151 |
-
"type": "None"
|
152 |
-
},
|
153 |
-
"position": "top",
|
154 |
-
"name": "output"
|
155 |
-
}
|
156 |
-
},
|
157 |
"params": {
|
158 |
"scenario_file": {
|
159 |
"type": {
|
160 |
"type": "<class 'str'>"
|
161 |
},
|
162 |
-
"
|
163 |
-
"
|
164 |
},
|
165 |
"node_types": {
|
|
|
166 |
"type": {
|
167 |
"type": "<class 'str'>"
|
168 |
},
|
169 |
-
"name": "node_types"
|
170 |
-
"default": "intent_cluster"
|
171 |
}
|
172 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
}
|
174 |
},
|
175 |
"position": {
|
176 |
"x": -549.1300345090008,
|
177 |
"y": 1086.4852248156676
|
178 |
},
|
179 |
-
"
|
180 |
"height": 200.0,
|
181 |
-
"
|
182 |
},
|
183 |
{
|
184 |
"id": "Chat API 1",
|
@@ -192,48 +194,48 @@
|
|
192 |
"error": null,
|
193 |
"meta": {
|
194 |
"name": "Chat API",
|
|
|
195 |
"outputs": {
|
196 |
"output": {
|
197 |
-
"position": "top",
|
198 |
-
"name": "output",
|
199 |
"type": {
|
200 |
"type": "None"
|
201 |
-
}
|
202 |
-
}
|
203 |
-
},
|
204 |
-
"params": {
|
205 |
-
"model": {
|
206 |
-
"type": {
|
207 |
-
"type": "<class 'str'>"
|
208 |
},
|
209 |
-
"
|
210 |
-
"name": "
|
211 |
}
|
212 |
},
|
213 |
"inputs": {
|
214 |
-
"
|
|
|
215 |
"type": {
|
216 |
"type": "<class 'inspect._empty'>"
|
217 |
},
|
218 |
-
"name": "knowledge_base",
|
219 |
"position": "bottom"
|
220 |
},
|
221 |
-
"
|
|
|
|
|
222 |
"type": {
|
223 |
"type": "<class 'inspect._empty'>"
|
224 |
-
}
|
225 |
-
"position": "bottom",
|
226 |
-
"name": "chatbot"
|
227 |
},
|
228 |
-
"
|
229 |
-
"position": "bottom",
|
230 |
"type": {
|
231 |
"type": "<class 'inspect._empty'>"
|
232 |
},
|
233 |
-
"
|
|
|
234 |
}
|
235 |
},
|
236 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
}
|
238 |
},
|
239 |
"position": {
|
@@ -241,8 +243,8 @@
|
|
241 |
"y": 258.20943122219336
|
242 |
},
|
243 |
"parentId": null,
|
244 |
-
"
|
245 |
-
"
|
246 |
},
|
247 |
{
|
248 |
"id": "Knowledge base 1",
|
@@ -250,13 +252,15 @@
|
|
250 |
"data": {
|
251 |
"title": "Knowledge base",
|
252 |
"params": {
|
253 |
-
"
|
254 |
"edges_path": "/home/darabos/nvme/lynxscribe/examples/chat_api/data/lynx/edges.pickle",
|
255 |
-
"
|
256 |
},
|
257 |
"display": null,
|
258 |
"error": null,
|
259 |
"meta": {
|
|
|
|
|
260 |
"params": {
|
261 |
"nodes_path": {
|
262 |
"name": "nodes_path",
|
@@ -265,31 +269,29 @@
|
|
265 |
"type": "<class 'str'>"
|
266 |
}
|
267 |
},
|
268 |
-
"
|
269 |
"type": {
|
270 |
"type": "<class 'str'>"
|
271 |
},
|
272 |
-
"name": "edges_path",
|
273 |
-
"default": "edges.pickle"
|
274 |
-
},
|
275 |
-
"template_cluster_path": {
|
276 |
"name": "template_cluster_path",
|
277 |
-
"default": "tempclusters.pickle"
|
|
|
|
|
|
|
|
|
278 |
"type": {
|
279 |
"type": "<class 'str'>"
|
280 |
}
|
281 |
}
|
282 |
},
|
283 |
-
"name": "Knowledge base",
|
284 |
"inputs": {},
|
285 |
-
"type": "basic",
|
286 |
"outputs": {
|
287 |
"output": {
|
|
|
288 |
"name": "output",
|
289 |
"type": {
|
290 |
"type": "None"
|
291 |
-
}
|
292 |
-
"position": "top"
|
293 |
}
|
294 |
}
|
295 |
}
|
@@ -298,9 +300,9 @@
|
|
298 |
"x": 598.8683124946176,
|
299 |
"y": 609.9499973808545
|
300 |
},
|
|
|
301 |
"height": 320.0,
|
302 |
-
"parentId": null
|
303 |
-
"width": 336.0
|
304 |
},
|
305 |
{
|
306 |
"id": "RAG chatbot 1",
|
@@ -309,74 +311,74 @@
|
|
309 |
"title": "RAG chatbot",
|
310 |
"params": {
|
311 |
"limits_by_type": "{\"information\": [2, 3], \"summary\": [2, 3]}",
|
312 |
-
"negative_answer": "I'm sorry, but the data I've been trained on does not contain any information related to your question.",
|
313 |
"max_results": "5",
|
|
|
314 |
"strict_limits": true
|
315 |
},
|
316 |
"display": null,
|
317 |
"error": null,
|
318 |
"meta": {
|
319 |
-
"
|
320 |
-
"
|
321 |
-
"
|
322 |
-
"name": "
|
323 |
"type": {
|
324 |
-
"type": "
|
325 |
}
|
326 |
-
}
|
|
|
|
|
327 |
"max_results": {
|
328 |
-
"
|
329 |
"type": {
|
330 |
"type": "<class 'int'>"
|
331 |
},
|
332 |
-
"
|
333 |
},
|
334 |
"strict_limits": {
|
335 |
-
"default": true,
|
336 |
"name": "strict_limits",
|
|
|
337 |
"type": {
|
338 |
"type": "<class 'bool'>"
|
339 |
}
|
340 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
"limits_by_type": {
|
342 |
-
"name": "limits_by_type",
|
343 |
"default": "{}",
|
|
|
344 |
"type": {
|
345 |
"type": "<class 'str'>"
|
346 |
}
|
347 |
}
|
348 |
},
|
349 |
-
"outputs": {
|
350 |
-
"output": {
|
351 |
-
"type": {
|
352 |
-
"type": "None"
|
353 |
-
},
|
354 |
-
"position": "top",
|
355 |
-
"name": "output"
|
356 |
-
}
|
357 |
-
},
|
358 |
-
"type": "basic",
|
359 |
"name": "RAG chatbot",
|
|
|
360 |
"inputs": {
|
361 |
"rag_graph": {
|
362 |
-
"name": "rag_graph",
|
363 |
"type": {
|
364 |
"type": "<class 'inspect._empty'>"
|
365 |
},
|
|
|
366 |
"position": "bottom"
|
367 |
},
|
368 |
-
"
|
369 |
-
"name": "
|
|
|
370 |
"type": {
|
371 |
"type": "<class 'inspect._empty'>"
|
372 |
-
}
|
373 |
-
"position": "bottom"
|
374 |
},
|
375 |
-
"
|
376 |
-
"name": "llm",
|
377 |
"type": {
|
378 |
"type": "<class 'inspect._empty'>"
|
379 |
},
|
|
|
380 |
"position": "bottom"
|
381 |
}
|
382 |
}
|
@@ -387,9 +389,9 @@
|
|
387 |
"x": -533.1301830766971,
|
388 |
"y": 547.294980747757
|
389 |
},
|
390 |
-
"width": 339.0,
|
391 |
"parentId": null,
|
392 |
-
"height": 399.0
|
|
|
393 |
},
|
394 |
{
|
395 |
"id": "RAG graph 1",
|
@@ -400,43 +402,43 @@
|
|
400 |
"display": null,
|
401 |
"error": null,
|
402 |
"meta": {
|
403 |
-
"
|
404 |
"inputs": {
|
405 |
-
"
|
406 |
-
"name": "vector_store",
|
407 |
"type": {
|
408 |
"type": "<class 'inspect._empty'>"
|
409 |
},
|
410 |
-
"position": "bottom"
|
|
|
411 |
},
|
412 |
-
"
|
|
|
413 |
"type": {
|
414 |
"type": "<class 'inspect._empty'>"
|
415 |
},
|
416 |
-
"
|
417 |
-
"name": "text_embedder"
|
418 |
}
|
419 |
},
|
|
|
420 |
"params": {},
|
421 |
"outputs": {
|
422 |
"output": {
|
423 |
"position": "top",
|
424 |
-
"name": "output",
|
425 |
"type": {
|
426 |
"type": "None"
|
427 |
-
}
|
|
|
428 |
}
|
429 |
-
}
|
430 |
-
"type": "basic"
|
431 |
}
|
432 |
},
|
433 |
"position": {
|
434 |
"x": -817.8208895639339,
|
435 |
"y": 1014.836542916127
|
436 |
},
|
437 |
-
"
|
438 |
"width": 200.0,
|
439 |
-
"
|
440 |
},
|
441 |
{
|
442 |
"id": "Vector store 1",
|
@@ -453,31 +455,31 @@
|
|
453 |
"meta": {
|
454 |
"params": {
|
455 |
"collection_name": {
|
456 |
-
"default": "lynx",
|
457 |
"type": {
|
458 |
"type": "<class 'str'>"
|
459 |
},
|
|
|
460 |
"name": "collection_name"
|
461 |
},
|
462 |
"name": {
|
463 |
"default": "chromadb",
|
464 |
-
"name": "name",
|
465 |
"type": {
|
466 |
"type": "<class 'str'>"
|
467 |
-
}
|
|
|
468 |
}
|
469 |
},
|
|
|
470 |
"name": "Vector store",
|
471 |
"outputs": {
|
472 |
"output": {
|
473 |
-
"name": "output",
|
474 |
"type": {
|
475 |
"type": "None"
|
476 |
},
|
477 |
-
"position": "top"
|
|
|
478 |
}
|
479 |
},
|
480 |
-
"type": "basic",
|
481 |
"inputs": {}
|
482 |
}
|
483 |
},
|
@@ -500,33 +502,33 @@
|
|
500 |
"display": null,
|
501 |
"error": null,
|
502 |
"meta": {
|
503 |
-
"type": "basic",
|
504 |
"params": {
|
505 |
"model": {
|
|
|
506 |
"type": {
|
507 |
"type": "<class 'str'>"
|
508 |
},
|
509 |
-
"name": "model"
|
510 |
-
"default": "text-embedding-ada-002"
|
511 |
-
}
|
512 |
-
},
|
513 |
-
"inputs": {
|
514 |
-
"llm": {
|
515 |
-
"name": "llm",
|
516 |
-
"position": "bottom",
|
517 |
-
"type": {
|
518 |
-
"type": "<class 'inspect._empty'>"
|
519 |
-
}
|
520 |
}
|
521 |
},
|
522 |
"name": "Text embedder",
|
523 |
"outputs": {
|
524 |
"output": {
|
525 |
-
"name": "output",
|
526 |
"type": {
|
527 |
"type": "None"
|
528 |
},
|
529 |
-
"position": "top"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
}
|
531 |
}
|
532 |
}
|
@@ -536,8 +538,8 @@
|
|
536 |
"y": 1343.5978526690794
|
537 |
},
|
538 |
"width": 200.0,
|
539 |
-
"
|
540 |
-
"
|
541 |
},
|
542 |
{
|
543 |
"id": "LLM 2",
|
@@ -550,36 +552,36 @@
|
|
550 |
"display": null,
|
551 |
"error": null,
|
552 |
"meta": {
|
553 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
"type": "basic",
|
|
|
555 |
"params": {
|
556 |
"name": {
|
557 |
-
"name": "name",
|
558 |
"default": "openai",
|
|
|
559 |
"type": {
|
560 |
"type": "<class 'str'>"
|
561 |
}
|
562 |
}
|
563 |
-
}
|
564 |
-
"outputs": {
|
565 |
-
"output": {
|
566 |
-
"name": "output",
|
567 |
-
"type": {
|
568 |
-
"type": "None"
|
569 |
-
},
|
570 |
-
"position": "top"
|
571 |
-
}
|
572 |
-
},
|
573 |
-
"name": "LLM"
|
574 |
}
|
575 |
},
|
576 |
"position": {
|
577 |
"x": -727.6171373682814,
|
578 |
"y": 1649.7242636905507
|
579 |
},
|
580 |
-
"height": 200.0,
|
581 |
"width": 200.0,
|
582 |
-
"parentId": null
|
|
|
583 |
},
|
584 |
{
|
585 |
"id": "Truncate history 1",
|
@@ -592,18 +594,6 @@
|
|
592 |
"display": null,
|
593 |
"error": null,
|
594 |
"meta": {
|
595 |
-
"name": "Truncate history",
|
596 |
-
"inputs": {},
|
597 |
-
"type": "basic",
|
598 |
-
"params": {
|
599 |
-
"max_tokens": {
|
600 |
-
"type": {
|
601 |
-
"type": "<class 'int'>"
|
602 |
-
},
|
603 |
-
"default": 10000.0,
|
604 |
-
"name": "max_tokens"
|
605 |
-
}
|
606 |
-
},
|
607 |
"outputs": {
|
608 |
"output": {
|
609 |
"type": {
|
@@ -612,7 +602,19 @@
|
|
612 |
"name": "output",
|
613 |
"position": "top"
|
614 |
}
|
615 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
}
|
617 |
},
|
618 |
"position": {
|
@@ -620,8 +622,8 @@
|
|
620 |
"y": 1044.7639853229612
|
621 |
},
|
622 |
"height": 200.0,
|
623 |
-
"
|
624 |
-
"
|
625 |
},
|
626 |
{
|
627 |
"id": "Chat processor 1",
|
@@ -631,38 +633,38 @@
|
|
631 |
"params": {},
|
632 |
"display": null,
|
633 |
"error": null,
|
634 |
-
"collapsed": true,
|
635 |
"__execution_delay": null,
|
|
|
636 |
"meta": {
|
|
|
637 |
"inputs": {
|
638 |
"processor": {
|
|
|
639 |
"position": "bottom",
|
640 |
"type": {
|
641 |
"type": "<class 'inspect._empty'>"
|
642 |
-
}
|
643 |
-
"name": "processor"
|
644 |
}
|
645 |
},
|
646 |
"params": {},
|
647 |
-
"
|
648 |
"outputs": {
|
649 |
"output": {
|
650 |
-
"position": "top",
|
651 |
-
"name": "output",
|
652 |
"type": {
|
653 |
"type": "None"
|
654 |
-
}
|
|
|
|
|
655 |
}
|
656 |
-
}
|
657 |
-
"type": "basic"
|
658 |
}
|
659 |
},
|
660 |
"position": {
|
661 |
"x": 182.89729246405872,
|
662 |
"y": 778.546274223181
|
663 |
},
|
664 |
-
"width": 200.0,
|
665 |
"parentId": null,
|
|
|
666 |
"height": 200.0
|
667 |
},
|
668 |
{
|
@@ -671,23 +673,26 @@
|
|
671 |
"data": {
|
672 |
"title": "Mask",
|
673 |
"params": {
|
674 |
-
"exceptions": "[email protected],[email protected],[email protected],[email protected]",
|
675 |
-
"regex": "([a-z0-9!#$%&'*+\\/=?^_`{|.}~-]+@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)",
|
676 |
"mask_pattern": "masked_email_address_{}",
|
677 |
-
"name": "email"
|
|
|
|
|
678 |
},
|
679 |
"display": null,
|
680 |
"error": null,
|
681 |
"meta": {
|
|
|
682 |
"outputs": {
|
683 |
"output": {
|
684 |
"position": "top",
|
|
|
685 |
"type": {
|
686 |
"type": "None"
|
687 |
-
}
|
688 |
-
"name": "output"
|
689 |
}
|
690 |
},
|
|
|
|
|
691 |
"params": {
|
692 |
"name": {
|
693 |
"default": "",
|
@@ -698,17 +703,10 @@
|
|
698 |
},
|
699 |
"exceptions": {
|
700 |
"name": "exceptions",
|
701 |
-
"default": "",
|
702 |
-
"type": {
|
703 |
-
"type": "<class 'str'>"
|
704 |
-
}
|
705 |
-
},
|
706 |
-
"mask_pattern": {
|
707 |
-
"default": "",
|
708 |
"type": {
|
709 |
"type": "<class 'str'>"
|
710 |
},
|
711 |
-
"
|
712 |
},
|
713 |
"regex": {
|
714 |
"type": {
|
@@ -716,20 +714,24 @@
|
|
716 |
},
|
717 |
"name": "regex",
|
718 |
"default": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
}
|
720 |
-
}
|
721 |
-
"type": "basic",
|
722 |
-
"inputs": {},
|
723 |
-
"name": "Mask"
|
724 |
}
|
725 |
},
|
726 |
"position": {
|
727 |
"x": 233.69759202223884,
|
728 |
"y": 1041.6145468043276
|
729 |
},
|
730 |
-
"
|
731 |
"parentId": null,
|
732 |
-
"
|
733 |
},
|
734 |
{
|
735 |
"id": "Mask 2",
|
@@ -737,54 +739,54 @@
|
|
737 |
"data": {
|
738 |
"title": "Mask",
|
739 |
"params": {
|
740 |
-
"mask_pattern": "masked_credit_card_number_{}",
|
741 |
-
"exceptions": "",
|
742 |
"regex": "((?:(?:\\\\d{4}[- ]?){3}\\\\d{4}|\\\\d{15,16}))(?![\\\\d])",
|
743 |
-
"
|
|
|
|
|
744 |
},
|
745 |
"display": null,
|
746 |
"error": null,
|
747 |
"meta": {
|
748 |
-
"name": "Mask",
|
749 |
"outputs": {
|
750 |
"output": {
|
751 |
"name": "output",
|
|
|
752 |
"type": {
|
753 |
"type": "None"
|
754 |
-
}
|
755 |
-
"position": "top"
|
756 |
}
|
757 |
},
|
758 |
-
"type": "basic",
|
759 |
"inputs": {},
|
|
|
|
|
760 |
"params": {
|
761 |
-
"
|
762 |
-
"default": "",
|
763 |
"type": {
|
764 |
"type": "<class 'str'>"
|
765 |
},
|
766 |
-
"
|
|
|
767 |
},
|
768 |
-
"
|
769 |
"default": "",
|
770 |
-
"name": "name",
|
771 |
"type": {
|
772 |
"type": "<class 'str'>"
|
773 |
-
}
|
|
|
774 |
},
|
775 |
-
"
|
776 |
-
"
|
777 |
"type": {
|
778 |
"type": "<class 'str'>"
|
779 |
},
|
780 |
-
"
|
781 |
},
|
782 |
-
"
|
|
|
783 |
"default": "",
|
784 |
"type": {
|
785 |
"type": "<class 'str'>"
|
786 |
-
}
|
787 |
-
"name": "regex"
|
788 |
}
|
789 |
}
|
790 |
}
|
@@ -793,9 +795,9 @@
|
|
793 |
"x": 513.2761671440603,
|
794 |
"y": 1034.8547191984255
|
795 |
},
|
796 |
-
"
|
797 |
"parentId": null,
|
798 |
-
"
|
799 |
},
|
800 |
{
|
801 |
"id": "Test Chat API 2",
|
@@ -807,46 +809,46 @@
|
|
807 |
},
|
808 |
"display": null,
|
809 |
"error": null,
|
|
|
|
|
810 |
"meta": {
|
811 |
-
"
|
812 |
-
"
|
813 |
-
"
|
814 |
"type": {
|
815 |
-
"type": "
|
816 |
},
|
817 |
-
"name": "
|
818 |
}
|
819 |
},
|
820 |
-
"type": "basic",
|
821 |
"inputs": {
|
822 |
-
"
|
823 |
-
"name": "
|
|
|
824 |
"type": {
|
825 |
"type": "<class 'inspect._empty'>"
|
826 |
-
}
|
827 |
-
"position": "bottom"
|
828 |
},
|
829 |
-
"
|
|
|
830 |
"type": {
|
831 |
"type": "<class 'inspect._empty'>"
|
832 |
},
|
833 |
-
"name": "
|
834 |
-
"position": "left"
|
835 |
}
|
836 |
},
|
837 |
-
"
|
838 |
-
|
839 |
-
|
840 |
"type": {
|
841 |
-
"type": "
|
842 |
},
|
843 |
-
"name": "
|
844 |
-
"default": false
|
845 |
}
|
846 |
-
}
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
},
|
851 |
"position": {
|
852 |
"x": -57.377776548056346,
|
|
|
7 |
"data": {
|
8 |
"title": "Input chat",
|
9 |
"params": {
|
10 |
+
"chat": "who is the CTO of Lynx?"
|
11 |
},
|
12 |
"display": null,
|
13 |
"error": null,
|
14 |
+
"collapsed": null,
|
15 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"inputs": {},
|
17 |
"params": {
|
18 |
"chat": {
|
19 |
+
"default": null,
|
20 |
"type": {
|
21 |
"type": "<class 'str'>"
|
22 |
},
|
23 |
+
"name": "chat"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"outputs": {
|
27 |
+
"output": {
|
28 |
+
"name": "output",
|
29 |
+
"type": {
|
30 |
+
"type": "None"
|
31 |
+
},
|
32 |
+
"position": "right"
|
33 |
}
|
34 |
},
|
35 |
"name": "Input chat",
|
36 |
"type": "basic"
|
37 |
+
},
|
38 |
+
"__execution_delay": 0.0
|
39 |
},
|
40 |
"position": {
|
41 |
"x": -493.5496596237119,
|
42 |
"y": 20.90123252513356
|
43 |
},
|
44 |
"height": 186.0,
|
45 |
+
"width": 259.0,
|
46 |
+
"parentId": null
|
47 |
},
|
48 |
{
|
49 |
"id": "View 1",
|
|
|
59 |
],
|
60 |
"data": [
|
61 |
[
|
62 |
+
"TheThe Chief Technology Officer (CTO) of Lynx Analytics is Chema Lizano. He leads the technology strategy and roadmap at the company, overseeing the vision, development, and implementation of solutions across various clients and environments. If you have any more questions regarding our team or services, feel free to ask!\n\nPlease visit https://www.lynxanalytics.com/board for further information."
|
63 |
]
|
64 |
]
|
65 |
}
|
|
|
68 |
"error": null,
|
69 |
"meta": {
|
70 |
"type": "table_view",
|
|
|
|
|
71 |
"name": "View",
|
72 |
"inputs": {
|
73 |
"input": {
|
|
|
74 |
"name": "input",
|
75 |
"type": {
|
76 |
"type": "<class 'inspect._empty'>"
|
77 |
+
},
|
78 |
+
"position": "left"
|
79 |
}
|
80 |
+
},
|
81 |
+
"outputs": {},
|
82 |
+
"params": {}
|
83 |
}
|
84 |
},
|
85 |
"position": {
|
86 |
+
"x": 731.7440706129762,
|
87 |
+
"y": -716.4943976910913
|
88 |
},
|
89 |
+
"width": 1256.0,
|
90 |
"parentId": null,
|
91 |
+
"height": 950.0
|
92 |
},
|
93 |
{
|
94 |
"id": "LLM 1",
|
|
|
102 |
"error": null,
|
103 |
"meta": {
|
104 |
"inputs": {},
|
105 |
+
"outputs": {
|
106 |
+
"output": {
|
107 |
+
"type": {
|
108 |
+
"type": "None"
|
109 |
+
},
|
110 |
+
"name": "output",
|
111 |
+
"position": "top"
|
112 |
+
}
|
113 |
+
},
|
114 |
"type": "basic",
|
|
|
115 |
"params": {
|
116 |
"name": {
|
117 |
+
"default": "openai",
|
118 |
"name": "name",
|
119 |
"type": {
|
120 |
"type": "<class 'str'>"
|
121 |
+
}
|
|
|
122 |
}
|
123 |
},
|
124 |
+
"name": "LLM"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
}
|
126 |
},
|
127 |
"position": {
|
128 |
"x": -312.5774211084781,
|
129 |
"y": 1093.4019527511366
|
130 |
},
|
131 |
+
"parentId": null,
|
132 |
"width": 200.0,
|
133 |
+
"height": 200.0
|
134 |
},
|
135 |
{
|
136 |
"id": "Scenario selector 1",
|
|
|
138 |
"data": {
|
139 |
"title": "Scenario selector",
|
140 |
"params": {
|
141 |
+
"scenario_file": "/home/darabos/nvme/lynxscribe/examples/chat_api/scenarios.yaml",
|
142 |
+
"node_types": "intent_cluster"
|
143 |
},
|
144 |
"display": null,
|
145 |
"error": null,
|
146 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
"params": {
|
148 |
"scenario_file": {
|
149 |
"type": {
|
150 |
"type": "<class 'str'>"
|
151 |
},
|
152 |
+
"name": "scenario_file",
|
153 |
+
"default": null
|
154 |
},
|
155 |
"node_types": {
|
156 |
+
"default": "intent_cluster",
|
157 |
"type": {
|
158 |
"type": "<class 'str'>"
|
159 |
},
|
160 |
+
"name": "node_types"
|
|
|
161 |
}
|
162 |
+
},
|
163 |
+
"inputs": {},
|
164 |
+
"outputs": {
|
165 |
+
"output": {
|
166 |
+
"position": "top",
|
167 |
+
"name": "output",
|
168 |
+
"type": {
|
169 |
+
"type": "None"
|
170 |
+
}
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"type": "basic",
|
174 |
+
"name": "Scenario selector"
|
175 |
}
|
176 |
},
|
177 |
"position": {
|
178 |
"x": -549.1300345090008,
|
179 |
"y": 1086.4852248156676
|
180 |
},
|
181 |
+
"parentId": null,
|
182 |
"height": 200.0,
|
183 |
+
"width": 200.0
|
184 |
},
|
185 |
{
|
186 |
"id": "Chat API 1",
|
|
|
194 |
"error": null,
|
195 |
"meta": {
|
196 |
"name": "Chat API",
|
197 |
+
"type": "basic",
|
198 |
"outputs": {
|
199 |
"output": {
|
|
|
|
|
200 |
"type": {
|
201 |
"type": "None"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
},
|
203 |
+
"position": "top",
|
204 |
+
"name": "output"
|
205 |
}
|
206 |
},
|
207 |
"inputs": {
|
208 |
+
"chatbot": {
|
209 |
+
"name": "chatbot",
|
210 |
"type": {
|
211 |
"type": "<class 'inspect._empty'>"
|
212 |
},
|
|
|
213 |
"position": "bottom"
|
214 |
},
|
215 |
+
"chat_processor": {
|
216 |
+
"name": "chat_processor",
|
217 |
+
"position": "bottom",
|
218 |
"type": {
|
219 |
"type": "<class 'inspect._empty'>"
|
220 |
+
}
|
|
|
|
|
221 |
},
|
222 |
+
"knowledge_base": {
|
|
|
223 |
"type": {
|
224 |
"type": "<class 'inspect._empty'>"
|
225 |
},
|
226 |
+
"position": "bottom",
|
227 |
+
"name": "knowledge_base"
|
228 |
}
|
229 |
},
|
230 |
+
"params": {
|
231 |
+
"model": {
|
232 |
+
"default": "gpt-4o-mini",
|
233 |
+
"type": {
|
234 |
+
"type": "<class 'str'>"
|
235 |
+
},
|
236 |
+
"name": "model"
|
237 |
+
}
|
238 |
+
}
|
239 |
}
|
240 |
},
|
241 |
"position": {
|
|
|
243 |
"y": 258.20943122219336
|
244 |
},
|
245 |
"parentId": null,
|
246 |
+
"width": 200.0,
|
247 |
+
"height": 200.0
|
248 |
},
|
249 |
{
|
250 |
"id": "Knowledge base 1",
|
|
|
252 |
"data": {
|
253 |
"title": "Knowledge base",
|
254 |
"params": {
|
255 |
+
"template_cluster_path": "/home/darabos/nvme/lynxscribe/examples/chat_api/data/lynx/tempclusters.pickle",
|
256 |
"edges_path": "/home/darabos/nvme/lynxscribe/examples/chat_api/data/lynx/edges.pickle",
|
257 |
+
"nodes_path": "/home/darabos/nvme/lynxscribe/examples/chat_api/data/lynx/nodes.pickle"
|
258 |
},
|
259 |
"display": null,
|
260 |
"error": null,
|
261 |
"meta": {
|
262 |
+
"name": "Knowledge base",
|
263 |
+
"type": "basic",
|
264 |
"params": {
|
265 |
"nodes_path": {
|
266 |
"name": "nodes_path",
|
|
|
269 |
"type": "<class 'str'>"
|
270 |
}
|
271 |
},
|
272 |
+
"template_cluster_path": {
|
273 |
"type": {
|
274 |
"type": "<class 'str'>"
|
275 |
},
|
|
|
|
|
|
|
|
|
276 |
"name": "template_cluster_path",
|
277 |
+
"default": "tempclusters.pickle"
|
278 |
+
},
|
279 |
+
"edges_path": {
|
280 |
+
"name": "edges_path",
|
281 |
+
"default": "edges.pickle",
|
282 |
"type": {
|
283 |
"type": "<class 'str'>"
|
284 |
}
|
285 |
}
|
286 |
},
|
|
|
287 |
"inputs": {},
|
|
|
288 |
"outputs": {
|
289 |
"output": {
|
290 |
+
"position": "top",
|
291 |
"name": "output",
|
292 |
"type": {
|
293 |
"type": "None"
|
294 |
+
}
|
|
|
295 |
}
|
296 |
}
|
297 |
}
|
|
|
300 |
"x": 598.8683124946176,
|
301 |
"y": 609.9499973808545
|
302 |
},
|
303 |
+
"width": 336.0,
|
304 |
"height": 320.0,
|
305 |
+
"parentId": null
|
|
|
306 |
},
|
307 |
{
|
308 |
"id": "RAG chatbot 1",
|
|
|
311 |
"title": "RAG chatbot",
|
312 |
"params": {
|
313 |
"limits_by_type": "{\"information\": [2, 3], \"summary\": [2, 3]}",
|
|
|
314 |
"max_results": "5",
|
315 |
+
"negative_answer": "I'm sorry, but the data I've been trained on does not contain any information related to your question.",
|
316 |
"strict_limits": true
|
317 |
},
|
318 |
"display": null,
|
319 |
"error": null,
|
320 |
"meta": {
|
321 |
+
"outputs": {
|
322 |
+
"output": {
|
323 |
+
"position": "top",
|
324 |
+
"name": "output",
|
325 |
"type": {
|
326 |
+
"type": "None"
|
327 |
}
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"params": {
|
331 |
"max_results": {
|
332 |
+
"default": 5.0,
|
333 |
"type": {
|
334 |
"type": "<class 'int'>"
|
335 |
},
|
336 |
+
"name": "max_results"
|
337 |
},
|
338 |
"strict_limits": {
|
|
|
339 |
"name": "strict_limits",
|
340 |
+
"default": true,
|
341 |
"type": {
|
342 |
"type": "<class 'bool'>"
|
343 |
}
|
344 |
},
|
345 |
+
"negative_answer": {
|
346 |
+
"default": "I'm sorry, but the data I've been trained on does not contain any information related to your question.",
|
347 |
+
"name": "negative_answer",
|
348 |
+
"type": {
|
349 |
+
"type": "<class 'str'>"
|
350 |
+
}
|
351 |
+
},
|
352 |
"limits_by_type": {
|
|
|
353 |
"default": "{}",
|
354 |
+
"name": "limits_by_type",
|
355 |
"type": {
|
356 |
"type": "<class 'str'>"
|
357 |
}
|
358 |
}
|
359 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
"name": "RAG chatbot",
|
361 |
+
"type": "basic",
|
362 |
"inputs": {
|
363 |
"rag_graph": {
|
|
|
364 |
"type": {
|
365 |
"type": "<class 'inspect._empty'>"
|
366 |
},
|
367 |
+
"name": "rag_graph",
|
368 |
"position": "bottom"
|
369 |
},
|
370 |
+
"llm": {
|
371 |
+
"name": "llm",
|
372 |
+
"position": "bottom",
|
373 |
"type": {
|
374 |
"type": "<class 'inspect._empty'>"
|
375 |
+
}
|
|
|
376 |
},
|
377 |
+
"scenario_selector": {
|
|
|
378 |
"type": {
|
379 |
"type": "<class 'inspect._empty'>"
|
380 |
},
|
381 |
+
"name": "scenario_selector",
|
382 |
"position": "bottom"
|
383 |
}
|
384 |
}
|
|
|
389 |
"x": -533.1301830766971,
|
390 |
"y": 547.294980747757
|
391 |
},
|
|
|
392 |
"parentId": null,
|
393 |
+
"height": 399.0,
|
394 |
+
"width": 339.0
|
395 |
},
|
396 |
{
|
397 |
"id": "RAG graph 1",
|
|
|
402 |
"display": null,
|
403 |
"error": null,
|
404 |
"meta": {
|
405 |
+
"type": "basic",
|
406 |
"inputs": {
|
407 |
+
"text_embedder": {
|
|
|
408 |
"type": {
|
409 |
"type": "<class 'inspect._empty'>"
|
410 |
},
|
411 |
+
"position": "bottom",
|
412 |
+
"name": "text_embedder"
|
413 |
},
|
414 |
+
"vector_store": {
|
415 |
+
"position": "bottom",
|
416 |
"type": {
|
417 |
"type": "<class 'inspect._empty'>"
|
418 |
},
|
419 |
+
"name": "vector_store"
|
|
|
420 |
}
|
421 |
},
|
422 |
+
"name": "RAG graph",
|
423 |
"params": {},
|
424 |
"outputs": {
|
425 |
"output": {
|
426 |
"position": "top",
|
|
|
427 |
"type": {
|
428 |
"type": "None"
|
429 |
+
},
|
430 |
+
"name": "output"
|
431 |
}
|
432 |
+
}
|
|
|
433 |
}
|
434 |
},
|
435 |
"position": {
|
436 |
"x": -817.8208895639339,
|
437 |
"y": 1014.836542916127
|
438 |
},
|
439 |
+
"parentId": null,
|
440 |
"width": 200.0,
|
441 |
+
"height": 200.0
|
442 |
},
|
443 |
{
|
444 |
"id": "Vector store 1",
|
|
|
455 |
"meta": {
|
456 |
"params": {
|
457 |
"collection_name": {
|
|
|
458 |
"type": {
|
459 |
"type": "<class 'str'>"
|
460 |
},
|
461 |
+
"default": "lynx",
|
462 |
"name": "collection_name"
|
463 |
},
|
464 |
"name": {
|
465 |
"default": "chromadb",
|
|
|
466 |
"type": {
|
467 |
"type": "<class 'str'>"
|
468 |
+
},
|
469 |
+
"name": "name"
|
470 |
}
|
471 |
},
|
472 |
+
"type": "basic",
|
473 |
"name": "Vector store",
|
474 |
"outputs": {
|
475 |
"output": {
|
|
|
476 |
"type": {
|
477 |
"type": "None"
|
478 |
},
|
479 |
+
"position": "top",
|
480 |
+
"name": "output"
|
481 |
}
|
482 |
},
|
|
|
483 |
"inputs": {}
|
484 |
}
|
485 |
},
|
|
|
502 |
"display": null,
|
503 |
"error": null,
|
504 |
"meta": {
|
|
|
505 |
"params": {
|
506 |
"model": {
|
507 |
+
"default": "text-embedding-ada-002",
|
508 |
"type": {
|
509 |
"type": "<class 'str'>"
|
510 |
},
|
511 |
+
"name": "model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
}
|
513 |
},
|
514 |
"name": "Text embedder",
|
515 |
"outputs": {
|
516 |
"output": {
|
|
|
517 |
"type": {
|
518 |
"type": "None"
|
519 |
},
|
520 |
+
"position": "top",
|
521 |
+
"name": "output"
|
522 |
+
}
|
523 |
+
},
|
524 |
+
"type": "basic",
|
525 |
+
"inputs": {
|
526 |
+
"llm": {
|
527 |
+
"type": {
|
528 |
+
"type": "<class 'inspect._empty'>"
|
529 |
+
},
|
530 |
+
"name": "llm",
|
531 |
+
"position": "bottom"
|
532 |
}
|
533 |
}
|
534 |
}
|
|
|
538 |
"y": 1343.5978526690794
|
539 |
},
|
540 |
"width": 200.0,
|
541 |
+
"height": 200.0,
|
542 |
+
"parentId": null
|
543 |
},
|
544 |
{
|
545 |
"id": "LLM 2",
|
|
|
552 |
"display": null,
|
553 |
"error": null,
|
554 |
"meta": {
|
555 |
+
"outputs": {
|
556 |
+
"output": {
|
557 |
+
"position": "top",
|
558 |
+
"name": "output",
|
559 |
+
"type": {
|
560 |
+
"type": "None"
|
561 |
+
}
|
562 |
+
}
|
563 |
+
},
|
564 |
+
"name": "LLM",
|
565 |
"type": "basic",
|
566 |
+
"inputs": {},
|
567 |
"params": {
|
568 |
"name": {
|
|
|
569 |
"default": "openai",
|
570 |
+
"name": "name",
|
571 |
"type": {
|
572 |
"type": "<class 'str'>"
|
573 |
}
|
574 |
}
|
575 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
}
|
577 |
},
|
578 |
"position": {
|
579 |
"x": -727.6171373682814,
|
580 |
"y": 1649.7242636905507
|
581 |
},
|
|
|
582 |
"width": 200.0,
|
583 |
+
"parentId": null,
|
584 |
+
"height": 200.0
|
585 |
},
|
586 |
{
|
587 |
"id": "Truncate history 1",
|
|
|
594 |
"display": null,
|
595 |
"error": null,
|
596 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
"outputs": {
|
598 |
"output": {
|
599 |
"type": {
|
|
|
602 |
"name": "output",
|
603 |
"position": "top"
|
604 |
}
|
605 |
+
},
|
606 |
+
"type": "basic",
|
607 |
+
"params": {
|
608 |
+
"max_tokens": {
|
609 |
+
"default": 10000.0,
|
610 |
+
"name": "max_tokens",
|
611 |
+
"type": {
|
612 |
+
"type": "<class 'int'>"
|
613 |
+
}
|
614 |
+
}
|
615 |
+
},
|
616 |
+
"name": "Truncate history",
|
617 |
+
"inputs": {}
|
618 |
}
|
619 |
},
|
620 |
"position": {
|
|
|
622 |
"y": 1044.7639853229612
|
623 |
},
|
624 |
"height": 200.0,
|
625 |
+
"width": 200.0,
|
626 |
+
"parentId": null
|
627 |
},
|
628 |
{
|
629 |
"id": "Chat processor 1",
|
|
|
633 |
"params": {},
|
634 |
"display": null,
|
635 |
"error": null,
|
|
|
636 |
"__execution_delay": null,
|
637 |
+
"collapsed": true,
|
638 |
"meta": {
|
639 |
+
"name": "Chat processor",
|
640 |
"inputs": {
|
641 |
"processor": {
|
642 |
+
"name": "processor",
|
643 |
"position": "bottom",
|
644 |
"type": {
|
645 |
"type": "<class 'inspect._empty'>"
|
646 |
+
}
|
|
|
647 |
}
|
648 |
},
|
649 |
"params": {},
|
650 |
+
"type": "basic",
|
651 |
"outputs": {
|
652 |
"output": {
|
|
|
|
|
653 |
"type": {
|
654 |
"type": "None"
|
655 |
+
},
|
656 |
+
"position": "top",
|
657 |
+
"name": "output"
|
658 |
}
|
659 |
+
}
|
|
|
660 |
}
|
661 |
},
|
662 |
"position": {
|
663 |
"x": 182.89729246405872,
|
664 |
"y": 778.546274223181
|
665 |
},
|
|
|
666 |
"parentId": null,
|
667 |
+
"width": 200.0,
|
668 |
"height": 200.0
|
669 |
},
|
670 |
{
|
|
|
673 |
"data": {
|
674 |
"title": "Mask",
|
675 |
"params": {
|
|
|
|
|
676 |
"mask_pattern": "masked_email_address_{}",
|
677 |
+
"name": "email",
|
678 |
+
"exceptions": "[email protected],[email protected],[email protected],[email protected]",
|
679 |
+
"regex": "([a-z0-9!#$%&'*+\\/=?^_`{|.}~-]+@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)"
|
680 |
},
|
681 |
"display": null,
|
682 |
"error": null,
|
683 |
"meta": {
|
684 |
+
"inputs": {},
|
685 |
"outputs": {
|
686 |
"output": {
|
687 |
"position": "top",
|
688 |
+
"name": "output",
|
689 |
"type": {
|
690 |
"type": "None"
|
691 |
+
}
|
|
|
692 |
}
|
693 |
},
|
694 |
+
"type": "basic",
|
695 |
+
"name": "Mask",
|
696 |
"params": {
|
697 |
"name": {
|
698 |
"default": "",
|
|
|
703 |
},
|
704 |
"exceptions": {
|
705 |
"name": "exceptions",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
"type": {
|
707 |
"type": "<class 'str'>"
|
708 |
},
|
709 |
+
"default": ""
|
710 |
},
|
711 |
"regex": {
|
712 |
"type": {
|
|
|
714 |
},
|
715 |
"name": "regex",
|
716 |
"default": ""
|
717 |
+
},
|
718 |
+
"mask_pattern": {
|
719 |
+
"default": "",
|
720 |
+
"type": {
|
721 |
+
"type": "<class 'str'>"
|
722 |
+
},
|
723 |
+
"name": "mask_pattern"
|
724 |
}
|
725 |
+
}
|
|
|
|
|
|
|
726 |
}
|
727 |
},
|
728 |
"position": {
|
729 |
"x": 233.69759202223884,
|
730 |
"y": 1041.6145468043276
|
731 |
},
|
732 |
+
"height": 200.0,
|
733 |
"parentId": null,
|
734 |
+
"width": 200.0
|
735 |
},
|
736 |
{
|
737 |
"id": "Mask 2",
|
|
|
739 |
"data": {
|
740 |
"title": "Mask",
|
741 |
"params": {
|
|
|
|
|
742 |
"regex": "((?:(?:\\\\d{4}[- ]?){3}\\\\d{4}|\\\\d{15,16}))(?![\\\\d])",
|
743 |
+
"exceptions": "",
|
744 |
+
"name": "credit_card",
|
745 |
+
"mask_pattern": "masked_credit_card_number_{}"
|
746 |
},
|
747 |
"display": null,
|
748 |
"error": null,
|
749 |
"meta": {
|
|
|
750 |
"outputs": {
|
751 |
"output": {
|
752 |
"name": "output",
|
753 |
+
"position": "top",
|
754 |
"type": {
|
755 |
"type": "None"
|
756 |
+
}
|
|
|
757 |
}
|
758 |
},
|
|
|
759 |
"inputs": {},
|
760 |
+
"name": "Mask",
|
761 |
+
"type": "basic",
|
762 |
"params": {
|
763 |
+
"exceptions": {
|
|
|
764 |
"type": {
|
765 |
"type": "<class 'str'>"
|
766 |
},
|
767 |
+
"default": "",
|
768 |
+
"name": "exceptions"
|
769 |
},
|
770 |
+
"regex": {
|
771 |
"default": "",
|
|
|
772 |
"type": {
|
773 |
"type": "<class 'str'>"
|
774 |
+
},
|
775 |
+
"name": "regex"
|
776 |
},
|
777 |
+
"mask_pattern": {
|
778 |
+
"name": "mask_pattern",
|
779 |
"type": {
|
780 |
"type": "<class 'str'>"
|
781 |
},
|
782 |
+
"default": ""
|
783 |
},
|
784 |
+
"name": {
|
785 |
+
"name": "name",
|
786 |
"default": "",
|
787 |
"type": {
|
788 |
"type": "<class 'str'>"
|
789 |
+
}
|
|
|
790 |
}
|
791 |
}
|
792 |
}
|
|
|
795 |
"x": 513.2761671440603,
|
796 |
"y": 1034.8547191984255
|
797 |
},
|
798 |
+
"width": 200.0,
|
799 |
"parentId": null,
|
800 |
+
"height": 200.0
|
801 |
},
|
802 |
{
|
803 |
"id": "Test Chat API 2",
|
|
|
809 |
},
|
810 |
"display": null,
|
811 |
"error": null,
|
812 |
+
"collapsed": false,
|
813 |
+
"__execution_delay": 0.0,
|
814 |
"meta": {
|
815 |
+
"params": {
|
816 |
+
"show_details": {
|
817 |
+
"default": false,
|
818 |
"type": {
|
819 |
+
"type": "<class 'bool'>"
|
820 |
},
|
821 |
+
"name": "show_details"
|
822 |
}
|
823 |
},
|
|
|
824 |
"inputs": {
|
825 |
+
"message": {
|
826 |
+
"name": "message",
|
827 |
+
"position": "left",
|
828 |
"type": {
|
829 |
"type": "<class 'inspect._empty'>"
|
830 |
+
}
|
|
|
831 |
},
|
832 |
+
"chat_api": {
|
833 |
+
"position": "bottom",
|
834 |
"type": {
|
835 |
"type": "<class 'inspect._empty'>"
|
836 |
},
|
837 |
+
"name": "chat_api"
|
|
|
838 |
}
|
839 |
},
|
840 |
+
"outputs": {
|
841 |
+
"output": {
|
842 |
+
"position": "right",
|
843 |
"type": {
|
844 |
+
"type": "None"
|
845 |
},
|
846 |
+
"name": "output"
|
|
|
847 |
}
|
848 |
+
},
|
849 |
+
"name": "Test Chat API",
|
850 |
+
"type": "basic"
|
851 |
+
}
|
852 |
},
|
853 |
"position": {
|
854 |
"x": -57.377776548056346,
|
lynxkite-app/data/PyTorch demo
CHANGED
@@ -11,25 +11,28 @@
|
|
11 |
"error": null,
|
12 |
"meta": {
|
13 |
"name": "Input: features",
|
14 |
-
"
|
15 |
-
"inputs": {},
|
16 |
"outputs": {
|
17 |
"x": {
|
|
|
18 |
"name": "x",
|
19 |
"type": {
|
20 |
"type": "tensor"
|
21 |
-
}
|
22 |
-
"position": "top"
|
23 |
}
|
24 |
},
|
25 |
-
"
|
26 |
-
"
|
27 |
-
}
|
|
|
|
|
28 |
},
|
29 |
"position": {
|
30 |
"x": -108.60604658638658,
|
31 |
"y": 63.96065124378427
|
32 |
},
|
|
|
|
|
33 |
"parentId": null
|
34 |
},
|
35 |
{
|
@@ -40,10 +43,13 @@
|
|
40 |
"params": {},
|
41 |
"display": null,
|
42 |
"error": null,
|
|
|
|
|
43 |
"meta": {
|
44 |
"name": "Input: graph edges",
|
45 |
-
"params": {},
|
46 |
"inputs": {},
|
|
|
|
|
47 |
"outputs": {
|
48 |
"edges": {
|
49 |
"name": "edges",
|
@@ -52,16 +58,16 @@
|
|
52 |
},
|
53 |
"position": "top"
|
54 |
}
|
55 |
-
}
|
56 |
-
"type": "basic",
|
57 |
-
"sub_nodes": null
|
58 |
}
|
59 |
},
|
60 |
"position": {
|
61 |
"x": 180.7373888617958,
|
62 |
"y": 58.54904654355781
|
63 |
},
|
64 |
-
"
|
|
|
|
|
65 |
},
|
66 |
{
|
67 |
"id": "Linear 1",
|
@@ -74,43 +80,44 @@
|
|
74 |
"display": null,
|
75 |
"error": null,
|
76 |
"meta": {
|
77 |
-
"name": "Linear",
|
78 |
-
"params": {
|
79 |
-
"output_dim": {
|
80 |
-
"name": "output_dim",
|
81 |
-
"default": "same",
|
82 |
-
"type": {
|
83 |
-
"type": "<class 'str'>"
|
84 |
-
}
|
85 |
-
}
|
86 |
-
},
|
87 |
"inputs": {
|
88 |
"x": {
|
89 |
-
"name": "x",
|
90 |
"type": {
|
91 |
"type": "tensor"
|
92 |
},
|
93 |
-
"position": "bottom"
|
|
|
94 |
}
|
95 |
},
|
|
|
|
|
96 |
"outputs": {
|
97 |
"x": {
|
98 |
-
"name": "x",
|
99 |
"type": {
|
100 |
"type": "tensor"
|
101 |
},
|
102 |
-
"position": "top"
|
|
|
103 |
}
|
104 |
},
|
105 |
-
"
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
}
|
108 |
},
|
109 |
"position": {
|
110 |
-
"x":
|
111 |
-
"y": -
|
112 |
},
|
113 |
-
"parentId": null
|
|
|
|
|
114 |
},
|
115 |
{
|
116 |
"id": "Activation 1",
|
@@ -123,11 +130,30 @@
|
|
123 |
"display": null,
|
124 |
"error": null,
|
125 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
"name": "Activation",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
"params": {
|
128 |
"type": {
|
|
|
129 |
"name": "type",
|
130 |
-
"default": 1,
|
131 |
"type": {
|
132 |
"enum": [
|
133 |
"ReLU",
|
@@ -137,34 +163,16 @@
|
|
137 |
]
|
138 |
}
|
139 |
}
|
140 |
-
}
|
141 |
-
"inputs": {
|
142 |
-
"x": {
|
143 |
-
"name": "x",
|
144 |
-
"type": {
|
145 |
-
"type": "tensor"
|
146 |
-
},
|
147 |
-
"position": "bottom"
|
148 |
-
}
|
149 |
-
},
|
150 |
-
"outputs": {
|
151 |
-
"x": {
|
152 |
-
"name": "x",
|
153 |
-
"type": {
|
154 |
-
"type": "tensor"
|
155 |
-
},
|
156 |
-
"position": "top"
|
157 |
-
}
|
158 |
-
},
|
159 |
-
"type": "basic",
|
160 |
-
"sub_nodes": null
|
161 |
}
|
162 |
},
|
163 |
"position": {
|
164 |
-
"x":
|
165 |
-
"y": -
|
166 |
},
|
167 |
-
"
|
|
|
|
|
168 |
},
|
169 |
{
|
170 |
"id": "Dropout 1",
|
@@ -177,16 +185,7 @@
|
|
177 |
"display": null,
|
178 |
"error": null,
|
179 |
"meta": {
|
180 |
-
"
|
181 |
-
"params": {
|
182 |
-
"p": {
|
183 |
-
"name": "p",
|
184 |
-
"default": 0.5,
|
185 |
-
"type": {
|
186 |
-
"type": "<class 'float'>"
|
187 |
-
}
|
188 |
-
}
|
189 |
-
},
|
190 |
"inputs": {
|
191 |
"x": {
|
192 |
"name": "x",
|
@@ -196,59 +195,34 @@
|
|
196 |
"position": "bottom"
|
197 |
}
|
198 |
},
|
199 |
-
"
|
200 |
-
|
201 |
-
|
|
|
202 |
"type": {
|
203 |
-
"type": "
|
204 |
},
|
205 |
-
"
|
206 |
}
|
207 |
},
|
208 |
-
"
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
"position": {
|
213 |
-
"x": 56.938816909128036,
|
214 |
-
"y": -889.4846386414522
|
215 |
-
},
|
216 |
-
"parentId": null
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"id": "Repeat 1",
|
220 |
-
"type": "area",
|
221 |
-
"data": {
|
222 |
-
"title": "Repeat",
|
223 |
-
"params": {
|
224 |
-
"times": "3"
|
225 |
-
},
|
226 |
-
"display": null,
|
227 |
-
"error": null,
|
228 |
-
"meta": {
|
229 |
-
"name": "Repeat",
|
230 |
-
"params": {
|
231 |
-
"times": {
|
232 |
-
"name": "times",
|
233 |
-
"default": 1,
|
234 |
"type": {
|
235 |
-
"type": "
|
236 |
}
|
237 |
}
|
238 |
-
}
|
239 |
-
"inputs": {},
|
240 |
-
"outputs": {},
|
241 |
-
"type": "area",
|
242 |
-
"sub_nodes": null
|
243 |
}
|
244 |
},
|
245 |
"position": {
|
246 |
-
"x":
|
247 |
-
"y": -
|
248 |
},
|
|
|
249 |
"parentId": null,
|
250 |
-
"
|
251 |
-
"height": 600
|
252 |
},
|
253 |
{
|
254 |
"id": "Graph conv 1",
|
@@ -261,11 +235,21 @@
|
|
261 |
"display": null,
|
262 |
"error": null,
|
263 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
"name": "Graph conv",
|
265 |
"params": {
|
266 |
"type": {
|
267 |
"name": "type",
|
268 |
-
"default":
|
269 |
"type": {
|
270 |
"enum": [
|
271 |
"GCNConv",
|
@@ -278,10 +262,10 @@
|
|
278 |
},
|
279 |
"inputs": {
|
280 |
"x": {
|
281 |
-
"name": "x",
|
282 |
"type": {
|
283 |
"type": "tensor"
|
284 |
},
|
|
|
285 |
"position": "bottom"
|
286 |
},
|
287 |
"edges": {
|
@@ -291,61 +275,17 @@
|
|
291 |
},
|
292 |
"position": "bottom"
|
293 |
}
|
294 |
-
}
|
295 |
-
"outputs": {
|
296 |
-
"x": {
|
297 |
-
"name": "x",
|
298 |
-
"type": {
|
299 |
-
"type": "tensor"
|
300 |
-
},
|
301 |
-
"position": "top"
|
302 |
-
}
|
303 |
-
},
|
304 |
-
"type": "basic",
|
305 |
-
"sub_nodes": null
|
306 |
}
|
307 |
},
|
308 |
"position": {
|
309 |
"x": 64.08886242755246,
|
310 |
"y": -269.43023573181557
|
311 |
},
|
|
|
|
|
312 |
"parentId": null
|
313 |
},
|
314 |
-
{
|
315 |
-
"id": "Repeat 2",
|
316 |
-
"type": "area",
|
317 |
-
"data": {
|
318 |
-
"title": "Repeat",
|
319 |
-
"params": {
|
320 |
-
"times": "5"
|
321 |
-
},
|
322 |
-
"display": null,
|
323 |
-
"error": null,
|
324 |
-
"meta": {
|
325 |
-
"name": "Repeat",
|
326 |
-
"params": {
|
327 |
-
"times": {
|
328 |
-
"name": "times",
|
329 |
-
"default": 1,
|
330 |
-
"type": {
|
331 |
-
"type": "<class 'int'>"
|
332 |
-
}
|
333 |
-
}
|
334 |
-
},
|
335 |
-
"inputs": {},
|
336 |
-
"outputs": {},
|
337 |
-
"type": "area",
|
338 |
-
"sub_nodes": null
|
339 |
-
}
|
340 |
-
},
|
341 |
-
"position": {
|
342 |
-
"x": -46.21033706832179,
|
343 |
-
"y": -326.2712248181098
|
344 |
-
},
|
345 |
-
"parentId": null,
|
346 |
-
"width": 400,
|
347 |
-
"height": 200
|
348 |
-
},
|
349 |
{
|
350 |
"id": "Supervised loss 1",
|
351 |
"type": "basic",
|
@@ -354,19 +294,22 @@
|
|
354 |
"params": {},
|
355 |
"display": null,
|
356 |
"error": null,
|
|
|
|
|
357 |
"meta": {
|
358 |
-
"
|
359 |
"params": {},
|
|
|
360 |
"inputs": {
|
361 |
-
"
|
362 |
-
"name": "
|
363 |
"type": {
|
364 |
"type": "tensor"
|
365 |
},
|
366 |
"position": "bottom"
|
367 |
},
|
368 |
-
"
|
369 |
-
"name": "
|
370 |
"type": {
|
371 |
"type": "tensor"
|
372 |
},
|
@@ -375,22 +318,22 @@
|
|
375 |
},
|
376 |
"outputs": {
|
377 |
"loss": {
|
378 |
-
"
|
379 |
"type": {
|
380 |
"type": "tensor"
|
381 |
},
|
382 |
-
"
|
383 |
}
|
384 |
-
}
|
385 |
-
"type": "basic",
|
386 |
-
"sub_nodes": null
|
387 |
}
|
388 |
},
|
389 |
"position": {
|
390 |
"x": 110.53693593362718,
|
391 |
"y": -1123.9976567905628
|
392 |
},
|
393 |
-
"parentId": null
|
|
|
|
|
394 |
},
|
395 |
{
|
396 |
"id": "Input: label 1",
|
@@ -400,27 +343,30 @@
|
|
400 |
"params": {},
|
401 |
"display": null,
|
402 |
"error": null,
|
|
|
|
|
403 |
"meta": {
|
404 |
-
"name": "Input: label",
|
405 |
-
"params": {},
|
406 |
"inputs": {},
|
407 |
"outputs": {
|
408 |
"y": {
|
409 |
-
"name": "y",
|
410 |
"type": {
|
411 |
"type": "tensor"
|
412 |
},
|
413 |
-
"position": "top"
|
|
|
414 |
}
|
415 |
},
|
|
|
416 |
"type": "basic",
|
417 |
-
"
|
418 |
}
|
419 |
},
|
420 |
"position": {
|
421 |
"x": 666.110498676668,
|
422 |
"y": -898.6721561114967
|
423 |
},
|
|
|
|
|
424 |
"parentId": null
|
425 |
},
|
426 |
{
|
@@ -429,17 +375,23 @@
|
|
429 |
"data": {
|
430 |
"title": "Optimizer",
|
431 |
"params": {
|
432 |
-
"
|
433 |
-
"
|
434 |
},
|
435 |
"display": null,
|
436 |
"error": null,
|
437 |
"meta": {
|
438 |
"name": "Optimizer",
|
|
|
439 |
"params": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
"type": {
|
441 |
-
"name": "type",
|
442 |
-
"default": 1,
|
443 |
"type": {
|
444 |
"enum": [
|
445 |
"AdamW",
|
@@ -450,35 +402,136 @@
|
|
450 |
"Paged AdamW",
|
451 |
"Galore AdamW"
|
452 |
]
|
453 |
-
}
|
454 |
-
|
455 |
-
|
456 |
-
"name": "lr",
|
457 |
-
"default": 0.001,
|
458 |
-
"type": {
|
459 |
-
"type": "<class 'float'>"
|
460 |
-
}
|
461 |
}
|
462 |
},
|
463 |
"inputs": {
|
464 |
"loss": {
|
|
|
|
|
|
|
465 |
"name": "loss",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
"type": {
|
467 |
"type": "tensor"
|
468 |
},
|
469 |
"position": "bottom"
|
470 |
}
|
471 |
},
|
472 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
"type": "basic",
|
474 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
}
|
476 |
},
|
477 |
"position": {
|
478 |
-
"x":
|
479 |
-
"y": -
|
480 |
},
|
481 |
-
"
|
|
|
482 |
}
|
483 |
],
|
484 |
"edges": [
|
@@ -537,6 +590,34 @@
|
|
537 |
"target": "Optimizer 1",
|
538 |
"sourceHandle": "loss",
|
539 |
"targetHandle": "loss"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
}
|
541 |
]
|
542 |
}
|
|
|
11 |
"error": null,
|
12 |
"meta": {
|
13 |
"name": "Input: features",
|
14 |
+
"type": "basic",
|
|
|
15 |
"outputs": {
|
16 |
"x": {
|
17 |
+
"position": "top",
|
18 |
"name": "x",
|
19 |
"type": {
|
20 |
"type": "tensor"
|
21 |
+
}
|
|
|
22 |
}
|
23 |
},
|
24 |
+
"params": {},
|
25 |
+
"inputs": {}
|
26 |
+
},
|
27 |
+
"collapsed": true,
|
28 |
+
"__execution_delay": null
|
29 |
},
|
30 |
"position": {
|
31 |
"x": -108.60604658638658,
|
32 |
"y": 63.96065124378427
|
33 |
},
|
34 |
+
"width": 200.0,
|
35 |
+
"height": 200.0,
|
36 |
"parentId": null
|
37 |
},
|
38 |
{
|
|
|
43 |
"params": {},
|
44 |
"display": null,
|
45 |
"error": null,
|
46 |
+
"__execution_delay": null,
|
47 |
+
"collapsed": true,
|
48 |
"meta": {
|
49 |
"name": "Input: graph edges",
|
|
|
50 |
"inputs": {},
|
51 |
+
"params": {},
|
52 |
+
"type": "basic",
|
53 |
"outputs": {
|
54 |
"edges": {
|
55 |
"name": "edges",
|
|
|
58 |
},
|
59 |
"position": "top"
|
60 |
}
|
61 |
+
}
|
|
|
|
|
62 |
}
|
63 |
},
|
64 |
"position": {
|
65 |
"x": 180.7373888617958,
|
66 |
"y": 58.54904654355781
|
67 |
},
|
68 |
+
"width": 200.0,
|
69 |
+
"parentId": null,
|
70 |
+
"height": 200.0
|
71 |
},
|
72 |
{
|
73 |
"id": "Linear 1",
|
|
|
80 |
"display": null,
|
81 |
"error": null,
|
82 |
"meta": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
"inputs": {
|
84 |
"x": {
|
|
|
85 |
"type": {
|
86 |
"type": "tensor"
|
87 |
},
|
88 |
+
"position": "bottom",
|
89 |
+
"name": "x"
|
90 |
}
|
91 |
},
|
92 |
+
"type": "basic",
|
93 |
+
"name": "Linear",
|
94 |
"outputs": {
|
95 |
"x": {
|
|
|
96 |
"type": {
|
97 |
"type": "tensor"
|
98 |
},
|
99 |
+
"position": "top",
|
100 |
+
"name": "x"
|
101 |
}
|
102 |
},
|
103 |
+
"params": {
|
104 |
+
"output_dim": {
|
105 |
+
"name": "output_dim",
|
106 |
+
"type": {
|
107 |
+
"type": "<class 'str'>"
|
108 |
+
},
|
109 |
+
"default": "same"
|
110 |
+
}
|
111 |
+
}
|
112 |
}
|
113 |
},
|
114 |
"position": {
|
115 |
+
"x": 78.37881963123723,
|
116 |
+
"y": -528.3012263817914
|
117 |
},
|
118 |
+
"parentId": null,
|
119 |
+
"width": 204.0,
|
120 |
+
"height": 140.0
|
121 |
},
|
122 |
{
|
123 |
"id": "Activation 1",
|
|
|
130 |
"display": null,
|
131 |
"error": null,
|
132 |
"meta": {
|
133 |
+
"outputs": {
|
134 |
+
"x": {
|
135 |
+
"position": "top",
|
136 |
+
"type": {
|
137 |
+
"type": "tensor"
|
138 |
+
},
|
139 |
+
"name": "x"
|
140 |
+
}
|
141 |
+
},
|
142 |
"name": "Activation",
|
143 |
+
"type": "basic",
|
144 |
+
"inputs": {
|
145 |
+
"x": {
|
146 |
+
"position": "bottom",
|
147 |
+
"name": "x",
|
148 |
+
"type": {
|
149 |
+
"type": "tensor"
|
150 |
+
}
|
151 |
+
}
|
152 |
+
},
|
153 |
"params": {
|
154 |
"type": {
|
155 |
+
"default": "OptionsFor_type.ReLU",
|
156 |
"name": "type",
|
|
|
157 |
"type": {
|
158 |
"enum": [
|
159 |
"ReLU",
|
|
|
163 |
]
|
164 |
}
|
165 |
}
|
166 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
}
|
168 |
},
|
169 |
"position": {
|
170 |
+
"x": 98.44658319023353,
|
171 |
+
"y": -741.1411130550297
|
172 |
},
|
173 |
+
"height": 154.0,
|
174 |
+
"parentId": null,
|
175 |
+
"width": 173.0
|
176 |
},
|
177 |
{
|
178 |
"id": "Dropout 1",
|
|
|
185 |
"display": null,
|
186 |
"error": null,
|
187 |
"meta": {
|
188 |
+
"type": "basic",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
"inputs": {
|
190 |
"x": {
|
191 |
"name": "x",
|
|
|
195 |
"position": "bottom"
|
196 |
}
|
197 |
},
|
198 |
+
"name": "Dropout",
|
199 |
+
"params": {
|
200 |
+
"p": {
|
201 |
+
"default": 0.5,
|
202 |
"type": {
|
203 |
+
"type": "<class 'float'>"
|
204 |
},
|
205 |
+
"name": "p"
|
206 |
}
|
207 |
},
|
208 |
+
"outputs": {
|
209 |
+
"x": {
|
210 |
+
"position": "top",
|
211 |
+
"name": "x",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
"type": {
|
213 |
+
"type": "tensor"
|
214 |
}
|
215 |
}
|
216 |
+
}
|
|
|
|
|
|
|
|
|
217 |
}
|
218 |
},
|
219 |
"position": {
|
220 |
+
"x": 73.61437458187964,
|
221 |
+
"y": -929.9824215609918
|
222 |
},
|
223 |
+
"width": 207.0,
|
224 |
"parentId": null,
|
225 |
+
"height": 159.0
|
|
|
226 |
},
|
227 |
{
|
228 |
"id": "Graph conv 1",
|
|
|
235 |
"display": null,
|
236 |
"error": null,
|
237 |
"meta": {
|
238 |
+
"outputs": {
|
239 |
+
"x": {
|
240 |
+
"type": {
|
241 |
+
"type": "tensor"
|
242 |
+
},
|
243 |
+
"name": "x",
|
244 |
+
"position": "top"
|
245 |
+
}
|
246 |
+
},
|
247 |
+
"type": "basic",
|
248 |
"name": "Graph conv",
|
249 |
"params": {
|
250 |
"type": {
|
251 |
"name": "type",
|
252 |
+
"default": "OptionsFor_type.GCNConv",
|
253 |
"type": {
|
254 |
"enum": [
|
255 |
"GCNConv",
|
|
|
262 |
},
|
263 |
"inputs": {
|
264 |
"x": {
|
|
|
265 |
"type": {
|
266 |
"type": "tensor"
|
267 |
},
|
268 |
+
"name": "x",
|
269 |
"position": "bottom"
|
270 |
},
|
271 |
"edges": {
|
|
|
275 |
},
|
276 |
"position": "bottom"
|
277 |
}
|
278 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
}
|
280 |
},
|
281 |
"position": {
|
282 |
"x": 64.08886242755246,
|
283 |
"y": -269.43023573181557
|
284 |
},
|
285 |
+
"height": 200.0,
|
286 |
+
"width": 200.0,
|
287 |
"parentId": null
|
288 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
{
|
290 |
"id": "Supervised loss 1",
|
291 |
"type": "basic",
|
|
|
294 |
"params": {},
|
295 |
"display": null,
|
296 |
"error": null,
|
297 |
+
"collapsed": true,
|
298 |
+
"__execution_delay": null,
|
299 |
"meta": {
|
300 |
+
"type": "basic",
|
301 |
"params": {},
|
302 |
+
"name": "Supervised loss",
|
303 |
"inputs": {
|
304 |
+
"y": {
|
305 |
+
"name": "y",
|
306 |
"type": {
|
307 |
"type": "tensor"
|
308 |
},
|
309 |
"position": "bottom"
|
310 |
},
|
311 |
+
"x": {
|
312 |
+
"name": "x",
|
313 |
"type": {
|
314 |
"type": "tensor"
|
315 |
},
|
|
|
318 |
},
|
319 |
"outputs": {
|
320 |
"loss": {
|
321 |
+
"position": "top",
|
322 |
"type": {
|
323 |
"type": "tensor"
|
324 |
},
|
325 |
+
"name": "loss"
|
326 |
}
|
327 |
+
}
|
|
|
|
|
328 |
}
|
329 |
},
|
330 |
"position": {
|
331 |
"x": 110.53693593362718,
|
332 |
"y": -1123.9976567905628
|
333 |
},
|
334 |
+
"parentId": null,
|
335 |
+
"height": 80.0,
|
336 |
+
"width": 204.0
|
337 |
},
|
338 |
{
|
339 |
"id": "Input: label 1",
|
|
|
343 |
"params": {},
|
344 |
"display": null,
|
345 |
"error": null,
|
346 |
+
"collapsed": true,
|
347 |
+
"__execution_delay": null,
|
348 |
"meta": {
|
|
|
|
|
349 |
"inputs": {},
|
350 |
"outputs": {
|
351 |
"y": {
|
|
|
352 |
"type": {
|
353 |
"type": "tensor"
|
354 |
},
|
355 |
+
"position": "top",
|
356 |
+
"name": "y"
|
357 |
}
|
358 |
},
|
359 |
+
"name": "Input: label",
|
360 |
"type": "basic",
|
361 |
+
"params": {}
|
362 |
}
|
363 |
},
|
364 |
"position": {
|
365 |
"x": 666.110498676668,
|
366 |
"y": -898.6721561114967
|
367 |
},
|
368 |
+
"width": 200.0,
|
369 |
+
"height": 73.0,
|
370 |
"parentId": null
|
371 |
},
|
372 |
{
|
|
|
375 |
"data": {
|
376 |
"title": "Optimizer",
|
377 |
"params": {
|
378 |
+
"lr": 0.001,
|
379 |
+
"type": "AdamW"
|
380 |
},
|
381 |
"display": null,
|
382 |
"error": null,
|
383 |
"meta": {
|
384 |
"name": "Optimizer",
|
385 |
+
"outputs": {},
|
386 |
"params": {
|
387 |
+
"lr": {
|
388 |
+
"default": 0.001,
|
389 |
+
"name": "lr",
|
390 |
+
"type": {
|
391 |
+
"type": "<class 'float'>"
|
392 |
+
}
|
393 |
+
},
|
394 |
"type": {
|
|
|
|
|
395 |
"type": {
|
396 |
"enum": [
|
397 |
"AdamW",
|
|
|
402 |
"Paged AdamW",
|
403 |
"Galore AdamW"
|
404 |
]
|
405 |
+
},
|
406 |
+
"name": "type",
|
407 |
+
"default": "OptionsFor_type.AdamW"
|
|
|
|
|
|
|
|
|
|
|
408 |
}
|
409 |
},
|
410 |
"inputs": {
|
411 |
"loss": {
|
412 |
+
"type": {
|
413 |
+
"type": "tensor"
|
414 |
+
},
|
415 |
"name": "loss",
|
416 |
+
"position": "bottom"
|
417 |
+
}
|
418 |
+
},
|
419 |
+
"type": "basic"
|
420 |
+
}
|
421 |
+
},
|
422 |
+
"position": {
|
423 |
+
"x": 115.25730958703494,
|
424 |
+
"y": -1431.5320892753364
|
425 |
+
},
|
426 |
+
"width": 200.0,
|
427 |
+
"height": 233.0,
|
428 |
+
"parentId": null
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"id": "Repeat 3",
|
432 |
+
"type": "basic",
|
433 |
+
"data": {
|
434 |
+
"title": "Repeat",
|
435 |
+
"params": {
|
436 |
+
"times": 1.0
|
437 |
+
},
|
438 |
+
"display": null,
|
439 |
+
"error": null,
|
440 |
+
"meta": {
|
441 |
+
"type": "basic",
|
442 |
+
"position": {
|
443 |
+
"y": 340.0,
|
444 |
+
"x": 371.0
|
445 |
+
},
|
446 |
+
"outputs": {
|
447 |
+
"output": {
|
448 |
+
"name": "output",
|
449 |
"type": {
|
450 |
"type": "tensor"
|
451 |
},
|
452 |
"position": "bottom"
|
453 |
}
|
454 |
},
|
455 |
+
"name": "Repeat",
|
456 |
+
"params": {
|
457 |
+
"times": {
|
458 |
+
"name": "times",
|
459 |
+
"default": 1.0,
|
460 |
+
"type": {
|
461 |
+
"type": "<class 'int'>"
|
462 |
+
}
|
463 |
+
}
|
464 |
+
},
|
465 |
+
"inputs": {
|
466 |
+
"input": {
|
467 |
+
"type": {
|
468 |
+
"type": "tensor"
|
469 |
+
},
|
470 |
+
"position": "top",
|
471 |
+
"name": "input"
|
472 |
+
}
|
473 |
+
}
|
474 |
+
}
|
475 |
+
},
|
476 |
+
"position": {
|
477 |
+
"x": -245.1288628776232,
|
478 |
+
"y": -276.90661040974317
|
479 |
+
},
|
480 |
+
"width": 200.0,
|
481 |
+
"height": 200.0
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"id": "Repeat 1",
|
485 |
+
"type": "basic",
|
486 |
+
"data": {
|
487 |
+
"title": "Repeat",
|
488 |
+
"params": {
|
489 |
+
"times": 1.0
|
490 |
+
},
|
491 |
+
"display": null,
|
492 |
+
"error": null,
|
493 |
+
"meta": {
|
494 |
+
"outputs": {
|
495 |
+
"output": {
|
496 |
+
"position": "bottom",
|
497 |
+
"type": {
|
498 |
+
"type": "tensor"
|
499 |
+
},
|
500 |
+
"name": "output"
|
501 |
+
}
|
502 |
+
},
|
503 |
+
"params": {
|
504 |
+
"times": {
|
505 |
+
"default": 1.0,
|
506 |
+
"type": {
|
507 |
+
"type": "<class 'int'>"
|
508 |
+
},
|
509 |
+
"name": "times"
|
510 |
+
}
|
511 |
+
},
|
512 |
+
"position": {
|
513 |
+
"x": 387.0,
|
514 |
+
"y": 337.0
|
515 |
+
},
|
516 |
"type": "basic",
|
517 |
+
"name": "Repeat",
|
518 |
+
"inputs": {
|
519 |
+
"input": {
|
520 |
+
"name": "input",
|
521 |
+
"position": "top",
|
522 |
+
"type": {
|
523 |
+
"type": "tensor"
|
524 |
+
}
|
525 |
+
}
|
526 |
+
}
|
527 |
}
|
528 |
},
|
529 |
"position": {
|
530 |
+
"x": -258.0088683218416,
|
531 |
+
"y": -737.3822225246788
|
532 |
},
|
533 |
+
"width": 200.0,
|
534 |
+
"height": 200.0
|
535 |
}
|
536 |
],
|
537 |
"edges": [
|
|
|
590 |
"target": "Optimizer 1",
|
591 |
"sourceHandle": "loss",
|
592 |
"targetHandle": "loss"
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"id": "Graph conv 1 Repeat 3",
|
596 |
+
"source": "Graph conv 1",
|
597 |
+
"target": "Repeat 3",
|
598 |
+
"sourceHandle": "x",
|
599 |
+
"targetHandle": "input"
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"id": "Repeat 3 Graph conv 1",
|
603 |
+
"source": "Repeat 3",
|
604 |
+
"target": "Graph conv 1",
|
605 |
+
"sourceHandle": "output",
|
606 |
+
"targetHandle": "x"
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"id": "Dropout 1 Repeat 1",
|
610 |
+
"source": "Dropout 1",
|
611 |
+
"target": "Repeat 1",
|
612 |
+
"sourceHandle": "x",
|
613 |
+
"targetHandle": "input"
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"id": "Repeat 1 Linear 1",
|
617 |
+
"source": "Repeat 1",
|
618 |
+
"target": "Linear 1",
|
619 |
+
"sourceHandle": "output",
|
620 |
+
"targetHandle": "x"
|
621 |
}
|
622 |
]
|
623 |
}
|
lynxkite-app/data/aimo-examples.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"id","problem","answer"
|
2 |
+
"229ee8","Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",52
|
3 |
+
"246d26","Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",250
|
4 |
+
"2fc4ad","Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",702
|
5 |
+
"430b63","What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",800
|
6 |
+
"5277ed","There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",211
|
7 |
+
"739bc9","For how many positive integers $m$ does the equation $\vert \vert x-1 \vert -2 \vert=\frac{m}{100}$ have $4$ distinct solutions?",199
|
8 |
+
"82e2a0","Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",185
|
9 |
+
"8ee6f3","The points $\left(x, y\right)$ satisfying $((\vert x + y \vert - 10)^2 + ( \vert x - y \vert - 10)^2)((\vert x \vert - 8)^2 + ( \vert y \vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",320
|
10 |
+
"bedda4","Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",480
|
11 |
+
"d7e9c9","A function $f: \mathbb N \to \mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",199
|
lynxkite-app/data/example-pizza.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hello
|
2 |
+
|
3 |
+
### 1. **Overview**
|
4 |
+
|
5 |
+
This document outlines the pricing structure and available options for our pizza delivery service. The goal is to provide clear guidance on the pricing tiers, additional offerings, and optional extras to ensure consistency across all locations and platforms (phone, online, in-app). All pricing is based on current market trends, food costs, and competitive analysis.
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
### 2. **Pizza Options**
|
10 |
+
|
11 |
+
#### 2.1 **Size & Base Pricing**
|
12 |
+
|
13 |
+
| Size | Diameter | Price (Cheese Pizza) |
|
14 |
+
|------------------|------------|----------------------|
|
15 |
+
| Small | 10 inches | $8.99 |
|
16 |
+
| Medium | 12 inches | $11.99 |
|
17 |
+
| Large | 14 inches | $14.99 |
|
18 |
+
| Extra Large | 16 inches | $17.99 |
|
19 |
+
|
20 |
+
**Note**: Cheese pizza pricing includes sauce and cheese. Toppings are additional (see section 2.3).
|
21 |
+
|
22 |
+
#### 2.2 **Crust Options**
|
23 |
+
|
24 |
+
| Crust Type | Description | Price Adjustment |
|
25 |
+
|------------------|------------------------------------------|------------------|
|
26 |
+
| Classic Hand-Tossed | Soft, airy texture | No Change |
|
27 |
+
| Thin & Crispy | Light and crunchy | No Change |
|
28 |
+
| Stuffed Crust | Filled with mozzarella | +$2.00 (M-XL) |
|
29 |
+
| Gluten-Free | 10" only; made with rice flour | +$2.50 (Small Only) |
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
### 3. **Toppings**
|
34 |
+
|
35 |
+
#### 3.1 **Standard Toppings**
|
36 |
+
**Price per topping:**
|
37 |
+
|
38 |
+
- Small: $1.00
|
39 |
+
- Medium: $1.50
|
40 |
+
- Large: $2.00
|
41 |
+
- Extra Large: $2.50
|
42 |
+
|
43 |
+
| Topping | Category |
|
44 |
+
|------------------|----------------|
|
45 |
+
| Pepperoni | Meat |
|
46 |
+
| Sausage | Meat |
|
47 |
+
| Mushrooms | Vegetable |
|
48 |
+
| Onions | Vegetable |
|
49 |
+
| Bell Peppers | Vegetable |
|
50 |
+
| Olives | Vegetable |
|
51 |
+
| Extra Cheese | Dairy |
|
52 |
+
|
53 |
+
#### 3.2 **Premium Toppings**
|
54 |
+
**Price per topping:**
|
55 |
+
|
56 |
+
- Small: $1.75
|
57 |
+
- Medium: $2.25
|
58 |
+
- Large: $2.75
|
59 |
+
- Extra Large: $3.25
|
60 |
+
|
61 |
+
| Topping | Category |
|
62 |
+
|------------------|----------------|
|
63 |
+
| Grilled Chicken | Meat |
|
64 |
+
| Bacon | Meat |
|
65 |
+
| Sun-Dried Tomatoes| Vegetable |
|
66 |
+
| Artichoke Hearts | Vegetable |
|
67 |
+
| Feta Cheese | Dairy |
|
68 |
+
| Vegan Cheese | Dairy Alternative |
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
### 4. **Specialty Pizzas**
|
73 |
+
|
74 |
+
Specialty pizzas include a combination of premium toppings and are available in all sizes. Prices below are for Medium size, with additional costs for upgrading to larger sizes.
|
75 |
+
|
76 |
+
| Pizza Name | Description | Price (Medium) |
|
77 |
+
|----------------------|----------------------------------------------------|-----------------|
|
78 |
+
| Meat Lover’s | Pepperoni, sausage, bacon, ham | $16.99 |
|
79 |
+
| Veggie Delight | Mushrooms, bell peppers, onions, olives | $14.99 |
|
80 |
+
| BBQ Chicken | BBQ sauce, grilled chicken, red onions, cilantro | $17.99 |
|
81 |
+
| Margherita | Fresh mozzarella, tomatoes, basil | $15.99 |
|
82 |
+
| Hawaiian | Ham, pineapple | $14.99 |
|
83 |
+
|
84 |
+
---
|
85 |
+
|
86 |
+
### 5. **Additional Menu Items**
|
87 |
+
|
88 |
+
#### 5.1 **Side Orders**
|
89 |
+
|
90 |
+
| Item | Description | Price |
|
91 |
+
|--------------------|--------------------------------------|---------------|
|
92 |
+
| Garlic Breadsticks | Served with marinara dipping sauce | $5.99 |
|
93 |
+
| Chicken Wings | Buffalo, BBQ, or plain (10 pieces) | $9.99 |
|
94 |
+
| Mozzarella Sticks | Served with marinara (8 pieces) | $6.99 |
|
95 |
+
| Caesar Salad | Romaine, croutons, Caesar dressing | $7.99 |
|
96 |
+
|
97 |
+
#### 5.2 **Desserts**
|
98 |
+
|
99 |
+
| Item | Description | Price |
|
100 |
+
|--------------------|--------------------------------------|---------------|
|
101 |
+
| Chocolate Brownies | Chewy and rich (6 pieces) | $4.99 |
|
102 |
+
| Cinnamon Sticks | Dusted with cinnamon sugar | $5.99 |
|
103 |
+
|
104 |
+
---
|
105 |
+
|
106 |
+
### 6. **Drinks**
|
107 |
+
|
108 |
+
| Size | Price |
|
109 |
+
|--------------------|---------------|
|
110 |
+
| 20 oz Bottle | $1.99 |
|
111 |
+
| 2-Liter Bottle | $3.50 |
|
112 |
+
|
113 |
+
Available options: Coke, Diet Coke, Sprite, Root Beer, Lemonade.
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
### 7. **Delivery Fees & Minimum Order**
|
118 |
+
|
119 |
+
- **Delivery Fee**: $2.99
|
120 |
+
- **Minimum Order**: $12.00
|
121 |
+
|
122 |
+
*Note: Delivery fees and minimum order thresholds apply to all delivery orders within a 5-mile radius. Additional charges may apply for orders outside this zone.*
|
123 |
+
|
124 |
+
---
|
125 |
+
|
126 |
+
### 8. **Promotions & Discounts**
|
127 |
+
|
128 |
+
- **Monday Madness**: Buy one large pizza, get a second pizza for 50% off.
|
129 |
+
- **Student Discount**: 10% off with valid student ID (pickup only).
|
130 |
+
- **Family Deal**: 2 large pizzas, 1 side, and 2-liter soda for $29.99.
|
131 |
+
|
132 |
+
---
|
133 |
+
|
134 |
+
### 9. **Conclusion**
|
135 |
+
|
136 |
+
This pricing and menu structure is designed to offer a wide range of choices for our customers while maintaining competitive pricing and ensuring profitability. Please ensure all team members are familiar with the details in this document and implement it accordingly.
|
lynxkite-app/data/night demo
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lynxkite-app/web/src/workspace/nodes/NodeParameter.tsx
CHANGED
@@ -24,7 +24,8 @@ export default function NodeParameter({ name, value, meta, onChange }: NodeParam
|
|
24 |
<textarea className="textarea textarea-bordered w-full max-w-xs"
|
25 |
rows={6}
|
26 |
value={value}
|
27 |
-
onChange={(evt) => onChange(evt.currentTarget.value)}
|
|
|
28 |
/>
|
29 |
</> : meta?.type?.enum ? <>
|
30 |
<ParamName name={name} />
|
|
|
24 |
<textarea className="textarea textarea-bordered w-full max-w-xs"
|
25 |
rows={6}
|
26 |
value={value}
|
27 |
+
onChange={(evt) => onChange(evt.currentTarget.value, { delay: 2 })}
|
28 |
+
onBlur={(evt) => onChange(evt.currentTarget.value, { delay: 0 })}
|
29 |
/>
|
30 |
</> : meta?.type?.enum ? <>
|
31 |
<ParamName name={name} />
|
lynxkite-graph-analytics/pyproject.toml
CHANGED
@@ -6,9 +6,11 @@ readme = "README.md"
|
|
6 |
requires-python = ">=3.11"
|
7 |
dependencies = [
|
8 |
"grand-cypher>=0.12.0",
|
|
|
9 |
"lynxkite-core",
|
10 |
"matplotlib>=3.10.0",
|
11 |
"networkx>=3.4.2",
|
|
|
12 |
"pandas>=2.2.3",
|
13 |
"polars[gpu]>=1.14.0",
|
14 |
]
|
|
|
6 |
requires-python = ">=3.11"
|
7 |
dependencies = [
|
8 |
"grand-cypher>=0.12.0",
|
9 |
+
"joblib>=1.4.2",
|
10 |
"lynxkite-core",
|
11 |
"matplotlib>=3.10.0",
|
12 |
"networkx>=3.4.2",
|
13 |
+
"osmnx>=2.0.1",
|
14 |
"pandas>=2.2.3",
|
15 |
"polars[gpu]>=1.14.0",
|
16 |
]
|
lynxkite-graph-analytics/src/lynxkite_plugins/graph_analytics/lynxkite_ops.py
CHANGED
@@ -6,13 +6,16 @@ from collections import deque
|
|
6 |
import dataclasses
|
7 |
import functools
|
8 |
import grandcypher
|
|
|
9 |
import matplotlib
|
10 |
import networkx as nx
|
11 |
import pandas as pd
|
12 |
import polars as pl
|
13 |
import traceback
|
14 |
import typing
|
|
|
15 |
|
|
|
16 |
ENV = "LynxKite Graph Analytics"
|
17 |
op = ops.op_registration(ENV)
|
18 |
|
@@ -52,6 +55,8 @@ class Bundle:
|
|
52 |
d = dict(graph.nodes(data=True))
|
53 |
nodes = pd.DataFrame(d.values(), index=d.keys())
|
54 |
nodes["id"] = nodes.index
|
|
|
|
|
55 |
return cls(
|
56 |
dfs={"edges": edges, "nodes": nodes},
|
57 |
relations=[
|
@@ -187,6 +192,32 @@ def import_csv(
|
|
187 |
)
|
188 |
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
@op("Create scale-free graph")
|
191 |
def create_scale_free_graph(*, nodes: int = 10):
|
192 |
"""Creates a scale-free graph with the given number of nodes."""
|
@@ -213,6 +244,11 @@ def discard_loop_edges(graph: nx.Graph):
|
|
213 |
return graph
|
214 |
|
215 |
|
|
|
|
|
|
|
|
|
|
|
216 |
@op("SQL")
|
217 |
def sql(bundle: Bundle, *, query: ops.LongStr, save_as: str = "result"):
|
218 |
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
|
@@ -286,7 +322,9 @@ def _map_color(value):
|
|
286 |
colors = cmap.colors[: len(categories)]
|
287 |
return [
|
288 |
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
|
289 |
-
for r, g, b in [
|
|
|
|
|
290 |
]
|
291 |
|
292 |
|
@@ -295,10 +333,35 @@ def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
|
|
295 |
nodes = graph.dfs["nodes"].copy()
|
296 |
if color_nodes_by:
|
297 |
nodes["color"] = _map_color(nodes[color_nodes_by])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
nodes = nodes.to_records()
|
299 |
edges = graph.dfs["edges"].drop_duplicates(["source", "target"])
|
300 |
edges = edges.to_records()
|
301 |
-
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000 / len(nodes))))
|
302 |
v = {
|
303 |
"animationDuration": 500,
|
304 |
"animationEasingUpdate": "quinticInOut",
|
@@ -308,7 +371,7 @@ def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
|
|
308 |
"roam": True,
|
309 |
"lineStyle": {
|
310 |
"color": "gray",
|
311 |
-
"curveness":
|
312 |
},
|
313 |
"emphasis": {
|
314 |
"focus": "adjacency",
|
|
|
6 |
import dataclasses
|
7 |
import functools
|
8 |
import grandcypher
|
9 |
+
import joblib
|
10 |
import matplotlib
|
11 |
import networkx as nx
|
12 |
import pandas as pd
|
13 |
import polars as pl
|
14 |
import traceback
|
15 |
import typing
|
16 |
+
import zipfile
|
17 |
|
18 |
+
mem = joblib.Memory("../joblib-cache")
|
19 |
ENV = "LynxKite Graph Analytics"
|
20 |
op = ops.op_registration(ENV)
|
21 |
|
|
|
55 |
d = dict(graph.nodes(data=True))
|
56 |
nodes = pd.DataFrame(d.values(), index=d.keys())
|
57 |
nodes["id"] = nodes.index
|
58 |
+
if "index" in nodes.columns:
|
59 |
+
nodes.drop(columns=["index"], inplace=True)
|
60 |
return cls(
|
61 |
dfs={"edges": edges, "nodes": nodes},
|
62 |
relations=[
|
|
|
192 |
)
|
193 |
|
194 |
|
195 |
+
@op("Import GraphML")
|
196 |
+
@mem.cache
|
197 |
+
def import_graphml(*, filename: str):
|
198 |
+
"""Imports a GraphML file."""
|
199 |
+
if filename.endswith(".zip"):
|
200 |
+
with zipfile.ZipFile(filename, "r") as z:
|
201 |
+
for fn in z.namelist():
|
202 |
+
if fn.endswith(".graphml"):
|
203 |
+
with z.open(fn) as f:
|
204 |
+
G = nx.read_graphml(f)
|
205 |
+
break
|
206 |
+
else:
|
207 |
+
raise ValueError("No GraphML file found in the ZIP archive.")
|
208 |
+
else:
|
209 |
+
G = nx.read_graphml(filename)
|
210 |
+
return G
|
211 |
+
|
212 |
+
|
213 |
+
@op("Graph from OSM")
|
214 |
+
@mem.cache
|
215 |
+
def import_osm(*, location: str):
|
216 |
+
import osmnx as ox
|
217 |
+
|
218 |
+
return ox.graph.graph_from_place(location, network_type="drive")
|
219 |
+
|
220 |
+
|
221 |
@op("Create scale-free graph")
|
222 |
def create_scale_free_graph(*, nodes: int = 10):
|
223 |
"""Creates a scale-free graph with the given number of nodes."""
|
|
|
244 |
return graph
|
245 |
|
246 |
|
247 |
+
@op("Discard parallel edges")
|
248 |
+
def discard_parallel_edges(graph: nx.Graph):
|
249 |
+
return nx.DiGraph(graph)
|
250 |
+
|
251 |
+
|
252 |
@op("SQL")
|
253 |
def sql(bundle: Bundle, *, query: ops.LongStr, save_as: str = "result"):
|
254 |
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
|
|
|
322 |
colors = cmap.colors[: len(categories)]
|
323 |
return [
|
324 |
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
|
325 |
+
for r, g, b in [
|
326 |
+
colors[min(len(colors) - 1, categories.get_loc(v))] for v in value
|
327 |
+
]
|
328 |
]
|
329 |
|
330 |
|
|
|
333 |
nodes = graph.dfs["nodes"].copy()
|
334 |
if color_nodes_by:
|
335 |
nodes["color"] = _map_color(nodes[color_nodes_by])
|
336 |
+
for cols in ["x y", "long lat"]:
|
337 |
+
x, y = cols.split()
|
338 |
+
if (
|
339 |
+
x in nodes.columns
|
340 |
+
and nodes[x].dtype == "float64"
|
341 |
+
and y in nodes.columns
|
342 |
+
and nodes[y].dtype == "float64"
|
343 |
+
):
|
344 |
+
cx, cy = nodes[x].mean(), nodes[y].mean()
|
345 |
+
dx, dy = nodes[x].std(), nodes[y].std()
|
346 |
+
# Scale up to avoid float precision issues and because eCharts omits short edges.
|
347 |
+
scale_x = 100 / max(dx, dy)
|
348 |
+
scale_y = scale_x
|
349 |
+
if y == "lat":
|
350 |
+
scale_y *= -1
|
351 |
+
pos = {
|
352 |
+
node_id: ((row[x] - cx) * scale_x, (row[y] - cy) * scale_y)
|
353 |
+
for node_id, row in nodes.iterrows()
|
354 |
+
}
|
355 |
+
curveness = 0 # Street maps are better with straight streets.
|
356 |
+
break
|
357 |
+
else:
|
358 |
+
pos = nx.spring_layout(
|
359 |
+
graph.to_nx(), iterations=max(1, int(10000 / len(nodes)))
|
360 |
+
)
|
361 |
+
curveness = 0.3
|
362 |
nodes = nodes.to_records()
|
363 |
edges = graph.dfs["edges"].drop_duplicates(["source", "target"])
|
364 |
edges = edges.to_records()
|
|
|
365 |
v = {
|
366 |
"animationDuration": 500,
|
367 |
"animationEasingUpdate": "quinticInOut",
|
|
|
371 |
"roam": True,
|
372 |
"lineStyle": {
|
373 |
"color": "gray",
|
374 |
+
"curveness": curveness,
|
375 |
},
|
376 |
"emphasis": {
|
377 |
"focus": "adjacency",
|
lynxkite-graph-analytics/src/lynxkite_plugins/graph_analytics/pytorch_model_ops.py
CHANGED
@@ -65,3 +65,11 @@ reg(
|
|
65 |
P.basic("lr", 0.001),
|
66 |
],
|
67 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
P.basic("lr", 0.001),
|
66 |
],
|
67 |
)
|
68 |
+
|
69 |
+
ops.register_passive_op(
|
70 |
+
ENV,
|
71 |
+
"Repeat",
|
72 |
+
inputs=[ops.Input(name="input", position="top", type="tensor")],
|
73 |
+
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
|
74 |
+
params=[ops.Parameter.basic("times", 1, int)],
|
75 |
+
)
|
lynxkite-graph-analytics/uv.lock
CHANGED
@@ -10,26 +10,60 @@ resolution-markers = [
|
|
10 |
]
|
11 |
|
12 |
[[package]]
|
13 |
-
name = "
|
14 |
-
version = "
|
15 |
source = { registry = "https://pypi.org/simple" }
|
16 |
-
|
17 |
-
{ name = "idna" },
|
18 |
-
{ name = "sniffio" },
|
19 |
-
{ name = "typing-extensions", marker = "python_full_version < '3.13'" },
|
20 |
-
]
|
21 |
-
sdist = { url = "https://files.pythonhosted.org/packages/a3/73/199a98fc2dae33535d6b8e8e6ec01f8c1d76c9adb096c6b7d64823038cde/anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a", size = 181126 }
|
22 |
wheels = [
|
23 |
-
{ url = "https://files.pythonhosted.org/packages/
|
24 |
]
|
25 |
|
26 |
[[package]]
|
27 |
-
name = "
|
28 |
-
version = "
|
29 |
source = { registry = "https://pypi.org/simple" }
|
30 |
-
sdist = { url = "https://files.pythonhosted.org/packages/
|
31 |
wheels = [
|
32 |
-
{ url = "https://files.pythonhosted.org/packages/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
]
|
34 |
|
35 |
[[package]]
|
@@ -99,13 +133,13 @@ wheels = [
|
|
99 |
[[package]]
|
100 |
name = "cudf-polars-cu12"
|
101 |
version = "24.12.0"
|
102 |
-
source = { registry = "https://pypi.
|
103 |
dependencies = [
|
104 |
{ name = "polars" },
|
105 |
{ name = "pylibcudf-cu12" },
|
106 |
]
|
107 |
wheels = [
|
108 |
-
{ url = "https://
|
109 |
]
|
110 |
|
111 |
[[package]]
|
@@ -195,6 +229,23 @@ wheels = [
|
|
195 |
{ url = "https://files.pythonhosted.org/packages/99/3b/406d17b1f63e04a82aa621936e6e1c53a8c05458abd66300ac85ea7f9ae9/fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977", size = 1111638 },
|
196 |
]
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
[[package]]
|
199 |
name = "grand-cypher"
|
200 |
version = "0.12.0"
|
@@ -216,49 +267,21 @@ dependencies = [
|
|
216 |
sdist = { url = "https://files.pythonhosted.org/packages/65/c6/27400e2d81bd769ebe65c695cead44c8efb55ac3769826a01c9223d65709/grandiso-2.2.0.tar.gz", hash = "sha256:66f292d27328e13122065c7905ad0ac79c4649f69a35e7b98a3631654a0bf77c", size = 16277 }
|
217 |
|
218 |
[[package]]
|
219 |
-
name = "
|
220 |
-
version = "
|
221 |
-
source = { registry = "https://pypi.org/simple" }
|
222 |
-
sdist = { url = "https://files.pythonhosted.org/packages/f5/38/3af3d3633a34a3316095b39c8e8fb4853a28a536e55d347bd8d8e9a14b03/h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d", size = 100418 }
|
223 |
-
wheels = [
|
224 |
-
{ url = "https://files.pythonhosted.org/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761", size = 58259 },
|
225 |
-
]
|
226 |
-
|
227 |
-
[[package]]
|
228 |
-
name = "httpcore"
|
229 |
-
version = "1.0.7"
|
230 |
-
source = { registry = "https://pypi.org/simple" }
|
231 |
-
dependencies = [
|
232 |
-
{ name = "certifi" },
|
233 |
-
{ name = "h11" },
|
234 |
-
]
|
235 |
-
sdist = { url = "https://files.pythonhosted.org/packages/6a/41/d7d0a89eb493922c37d343b607bc1b5da7f5be7e383740b4753ad8943e90/httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c", size = 85196 }
|
236 |
-
wheels = [
|
237 |
-
{ url = "https://files.pythonhosted.org/packages/87/f5/72347bc88306acb359581ac4d52f23c0ef445b57157adedb9aee0cd689d2/httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd", size = 78551 },
|
238 |
-
]
|
239 |
-
|
240 |
-
[[package]]
|
241 |
-
name = "httpx"
|
242 |
-
version = "0.28.1"
|
243 |
source = { registry = "https://pypi.org/simple" }
|
244 |
-
|
245 |
-
{ name = "anyio" },
|
246 |
-
{ name = "certifi" },
|
247 |
-
{ name = "httpcore" },
|
248 |
-
{ name = "idna" },
|
249 |
-
]
|
250 |
-
sdist = { url = "https://files.pythonhosted.org/packages/b1/df/48c586a5fe32a0f01324ee087459e112ebb7224f646c0b5023f5e79e9956/httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc", size = 141406 }
|
251 |
wheels = [
|
252 |
-
{ url = "https://files.pythonhosted.org/packages/
|
253 |
]
|
254 |
|
255 |
[[package]]
|
256 |
-
name = "
|
257 |
-
version = "
|
258 |
source = { registry = "https://pypi.org/simple" }
|
259 |
-
sdist = { url = "https://files.pythonhosted.org/packages/
|
260 |
wheels = [
|
261 |
-
{ url = "https://files.pythonhosted.org/packages/
|
262 |
]
|
263 |
|
264 |
[[package]]
|
@@ -339,23 +362,23 @@ wheels = [
|
|
339 |
[[package]]
|
340 |
name = "libcudf-cu12"
|
341 |
version = "24.12.0"
|
342 |
-
source = { registry = "https://pypi.
|
343 |
dependencies = [
|
344 |
{ name = "libkvikio-cu12" },
|
345 |
{ name = "nvidia-nvcomp-cu12" },
|
346 |
]
|
347 |
wheels = [
|
348 |
-
{ url = "https://
|
349 |
-
{ url = "https://
|
350 |
]
|
351 |
|
352 |
[[package]]
|
353 |
name = "libkvikio-cu12"
|
354 |
version = "24.12.1"
|
355 |
-
source = { registry = "https://pypi.
|
356 |
wheels = [
|
357 |
-
{ url = "https://
|
358 |
-
{ url = "https://
|
359 |
]
|
360 |
|
361 |
[[package]]
|
@@ -387,27 +410,29 @@ version = "0.1.0"
|
|
387 |
source = { virtual = "." }
|
388 |
dependencies = [
|
389 |
{ name = "grand-cypher" },
|
|
|
390 |
{ name = "lynxkite-core" },
|
391 |
{ name = "matplotlib" },
|
392 |
{ name = "networkx" },
|
393 |
-
{ name = "
|
394 |
{ name = "pandas" },
|
395 |
{ name = "polars", extra = ["gpu"] },
|
396 |
]
|
397 |
|
398 |
[package.optional-dependencies]
|
399 |
gpu = [
|
400 |
-
{ name = "
|
401 |
]
|
402 |
|
403 |
[package.metadata]
|
404 |
requires-dist = [
|
405 |
{ name = "grand-cypher", specifier = ">=0.12.0" },
|
406 |
-
{ name = "
|
407 |
{ name = "lynxkite-core", virtual = "../lynxkite-core" },
|
408 |
{ name = "matplotlib", specifier = ">=3.10.0" },
|
409 |
{ name = "networkx", specifier = ">=3.4.2" },
|
410 |
-
{ name = "nx-cugraph-cu12", specifier = ">=24.12.0" },
|
|
|
411 |
{ name = "pandas", specifier = ">=2.2.3" },
|
412 |
{ name = "polars", extras = ["gpu"], specifier = ">=1.14.0" },
|
413 |
]
|
@@ -517,69 +542,69 @@ wheels = [
|
|
517 |
[[package]]
|
518 |
name = "nvidia-cublas-cu12"
|
519 |
version = "12.8.3.14"
|
520 |
-
source = { registry = "https://pypi.
|
521 |
wheels = [
|
522 |
-
{ url = "https://
|
523 |
-
{ url = "https://
|
524 |
-
{ url = "https://
|
525 |
]
|
526 |
|
527 |
[[package]]
|
528 |
name = "nvidia-curand-cu12"
|
529 |
version = "10.3.9.55"
|
530 |
-
source = { registry = "https://pypi.
|
531 |
wheels = [
|
532 |
-
{ url = "https://
|
533 |
-
{ url = "https://
|
534 |
-
{ url = "https://
|
535 |
]
|
536 |
|
537 |
[[package]]
|
538 |
name = "nvidia-cusolver-cu12"
|
539 |
version = "11.7.2.55"
|
540 |
-
source = { registry = "https://pypi.
|
541 |
dependencies = [
|
542 |
{ name = "nvidia-cublas-cu12" },
|
543 |
{ name = "nvidia-cusparse-cu12" },
|
544 |
{ name = "nvidia-nvjitlink-cu12" },
|
545 |
]
|
546 |
wheels = [
|
547 |
-
{ url = "https://
|
548 |
-
{ url = "https://
|
549 |
-
{ url = "https://
|
550 |
]
|
551 |
|
552 |
[[package]]
|
553 |
name = "nvidia-cusparse-cu12"
|
554 |
version = "12.5.7.53"
|
555 |
-
source = { registry = "https://pypi.
|
556 |
dependencies = [
|
557 |
{ name = "nvidia-nvjitlink-cu12" },
|
558 |
]
|
559 |
wheels = [
|
560 |
-
{ url = "https://
|
561 |
-
{ url = "https://
|
562 |
-
{ url = "https://
|
563 |
]
|
564 |
|
565 |
[[package]]
|
566 |
name = "nvidia-nvcomp-cu12"
|
567 |
version = "4.1.0.6"
|
568 |
-
source = { registry = "https://pypi.
|
569 |
wheels = [
|
570 |
-
{ url = "https://
|
571 |
-
{ url = "https://
|
572 |
-
{ url = "https://
|
573 |
]
|
574 |
|
575 |
[[package]]
|
576 |
name = "nvidia-nvjitlink-cu12"
|
577 |
version = "12.8.61"
|
578 |
-
source = { registry = "https://pypi.
|
579 |
wheels = [
|
580 |
-
{ url = "https://
|
581 |
-
{ url = "https://
|
582 |
-
{ url = "https://
|
583 |
]
|
584 |
|
585 |
[[package]]
|
@@ -597,15 +622,30 @@ wheels = [
|
|
597 |
[[package]]
|
598 |
name = "nx-cugraph-cu12"
|
599 |
version = "24.12.0"
|
600 |
-
source = { registry = "https://pypi.
|
601 |
dependencies = [
|
602 |
{ name = "cupy-cuda12x" },
|
603 |
{ name = "networkx" },
|
604 |
{ name = "numpy" },
|
605 |
{ name = "pylibcugraph-cu12" },
|
606 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
wheels = [
|
608 |
-
{ url = "https://
|
609 |
]
|
610 |
|
611 |
[[package]]
|
@@ -763,7 +803,7 @@ wheels = [
|
|
763 |
[[package]]
|
764 |
name = "pylibcudf-cu12"
|
765 |
version = "24.12.0"
|
766 |
-
source = { registry = "https://pypi.
|
767 |
dependencies = [
|
768 |
{ name = "cuda-python" },
|
769 |
{ name = "libcudf-cu12" },
|
@@ -774,16 +814,16 @@ dependencies = [
|
|
774 |
{ name = "typing-extensions" },
|
775 |
]
|
776 |
wheels = [
|
777 |
-
{ url = "https://
|
778 |
-
{ url = "https://
|
779 |
-
{ url = "https://
|
780 |
-
{ url = "https://
|
781 |
]
|
782 |
|
783 |
[[package]]
|
784 |
name = "pylibcugraph-cu12"
|
785 |
version = "24.12.0"
|
786 |
-
source = { registry = "https://pypi.
|
787 |
dependencies = [
|
788 |
{ name = "nvidia-cublas-cu12" },
|
789 |
{ name = "nvidia-curand-cu12" },
|
@@ -792,17 +832,12 @@ dependencies = [
|
|
792 |
{ name = "pylibraft-cu12" },
|
793 |
{ name = "rmm-cu12" },
|
794 |
]
|
795 |
-
|
796 |
-
{ url = "https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-24.12.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:314d0c35cf2fadee224577e23c141fae4c59532c7a4a9a9ccfbcfac0bfdd75a7" },
|
797 |
-
{ url = "https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-24.12.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:bcc370b63c3b7da535c4c33658bbd8dde8ccef1dc63a5d6454afb462b8316de4" },
|
798 |
-
{ url = "https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-24.12.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fa100594d5d7f1d4d1405e1628d879bf3a39431169a6bd65619cb73f8ffe99fc" },
|
799 |
-
{ url = "https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-24.12.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:3ffdf0788aec9791b2483de45db0eeb2a1bafc0ae9ca8d34c8a5998a36b3120e" },
|
800 |
-
]
|
801 |
|
802 |
[[package]]
|
803 |
name = "pylibraft-cu12"
|
804 |
version = "24.12.0"
|
805 |
-
source = { registry = "https://pypi.
|
806 |
dependencies = [
|
807 |
{ name = "cuda-python" },
|
808 |
{ name = "numpy" },
|
@@ -812,11 +847,37 @@ dependencies = [
|
|
812 |
{ name = "nvidia-cusparse-cu12" },
|
813 |
{ name = "rmm-cu12" },
|
814 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
815 |
wheels = [
|
816 |
-
{ url = "https://
|
817 |
-
{ url = "https://
|
818 |
-
{ url = "https://
|
819 |
-
{ url = "https://
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
]
|
821 |
|
822 |
[[package]]
|
@@ -828,6 +889,35 @@ wheels = [
|
|
828 |
{ url = "https://files.pythonhosted.org/packages/1c/a7/c8a2d361bf89c0d9577c934ebb7421b25dc84bf3a8e3ac0a40aed9acc547/pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1", size = 107716 },
|
829 |
]
|
830 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
831 |
[[package]]
|
832 |
name = "python-dateutil"
|
833 |
version = "2.9.0.post0"
|
@@ -849,38 +939,73 @@ wheels = [
|
|
849 |
{ url = "https://files.pythonhosted.org/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725", size = 508002 },
|
850 |
]
|
851 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
852 |
[[package]]
|
853 |
name = "rmm-cu12"
|
854 |
version = "24.12.1"
|
855 |
-
source = { registry = "https://pypi.
|
856 |
dependencies = [
|
857 |
{ name = "cuda-python" },
|
858 |
{ name = "numba" },
|
859 |
{ name = "numpy" },
|
860 |
]
|
861 |
wheels = [
|
862 |
-
{ url = "https://
|
863 |
-
{ url = "https://
|
864 |
-
{ url = "https://
|
865 |
-
{ url = "https://
|
866 |
]
|
867 |
|
868 |
[[package]]
|
869 |
-
name = "
|
870 |
-
version = "
|
871 |
source = { registry = "https://pypi.org/simple" }
|
872 |
-
|
|
|
|
|
|
|
873 |
wheels = [
|
874 |
-
{ url = "https://files.pythonhosted.org/packages/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
]
|
876 |
|
877 |
[[package]]
|
878 |
-
name = "
|
879 |
-
version = "1.
|
880 |
source = { registry = "https://pypi.org/simple" }
|
881 |
-
sdist = { url = "https://files.pythonhosted.org/packages/
|
882 |
wheels = [
|
883 |
-
{ url = "https://files.pythonhosted.org/packages/
|
884 |
]
|
885 |
|
886 |
[[package]]
|
@@ -900,3 +1025,12 @@ sdist = { url = "https://files.pythonhosted.org/packages/e1/34/943888654477a574a
|
|
900 |
wheels = [
|
901 |
{ url = "https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd", size = 346586 },
|
902 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
]
|
11 |
|
12 |
[[package]]
|
13 |
+
name = "certifi"
|
14 |
+
version = "2025.1.31"
|
15 |
source = { registry = "https://pypi.org/simple" }
|
16 |
+
sdist = { url = "https://files.pythonhosted.org/packages/1c/ab/c9f1e32b7b1bf505bf26f0ef697775960db7932abeb7b516de930ba2705f/certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651", size = 167577 }
|
|
|
|
|
|
|
|
|
|
|
17 |
wheels = [
|
18 |
+
{ url = "https://files.pythonhosted.org/packages/38/fc/bce832fd4fd99766c04d1ee0eead6b0ec6486fb100ae5e74c1d91292b982/certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe", size = 166393 },
|
19 |
]
|
20 |
|
21 |
[[package]]
|
22 |
+
name = "charset-normalizer"
|
23 |
+
version = "3.4.1"
|
24 |
source = { registry = "https://pypi.org/simple" }
|
25 |
+
sdist = { url = "https://files.pythonhosted.org/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3", size = 123188 }
|
26 |
wheels = [
|
27 |
+
{ url = "https://files.pythonhosted.org/packages/72/80/41ef5d5a7935d2d3a773e3eaebf0a9350542f2cab4eac59a7a4741fbbbbe/charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125", size = 194995 },
|
28 |
+
{ url = "https://files.pythonhosted.org/packages/7a/28/0b9fefa7b8b080ec492110af6d88aa3dea91c464b17d53474b6e9ba5d2c5/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1", size = 139471 },
|
29 |
+
{ url = "https://files.pythonhosted.org/packages/71/64/d24ab1a997efb06402e3fc07317e94da358e2585165930d9d59ad45fcae2/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3", size = 149831 },
|
30 |
+
{ url = "https://files.pythonhosted.org/packages/37/ed/be39e5258e198655240db5e19e0b11379163ad7070962d6b0c87ed2c4d39/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd", size = 142335 },
|
31 |
+
{ url = "https://files.pythonhosted.org/packages/88/83/489e9504711fa05d8dde1574996408026bdbdbd938f23be67deebb5eca92/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00", size = 143862 },
|
32 |
+
{ url = "https://files.pythonhosted.org/packages/c6/c7/32da20821cf387b759ad24627a9aca289d2822de929b8a41b6241767b461/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12", size = 145673 },
|
33 |
+
{ url = "https://files.pythonhosted.org/packages/68/85/f4288e96039abdd5aeb5c546fa20a37b50da71b5cf01e75e87f16cd43304/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77", size = 140211 },
|
34 |
+
{ url = "https://files.pythonhosted.org/packages/28/a3/a42e70d03cbdabc18997baf4f0227c73591a08041c149e710045c281f97b/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146", size = 148039 },
|
35 |
+
{ url = "https://files.pythonhosted.org/packages/85/e4/65699e8ab3014ecbe6f5c71d1a55d810fb716bbfd74f6283d5c2aa87febf/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd", size = 151939 },
|
36 |
+
{ url = "https://files.pythonhosted.org/packages/b1/82/8e9fe624cc5374193de6860aba3ea8070f584c8565ee77c168ec13274bd2/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6", size = 149075 },
|
37 |
+
{ url = "https://files.pythonhosted.org/packages/3d/7b/82865ba54c765560c8433f65e8acb9217cb839a9e32b42af4aa8e945870f/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8", size = 144340 },
|
38 |
+
{ url = "https://files.pythonhosted.org/packages/b5/b6/9674a4b7d4d99a0d2df9b215da766ee682718f88055751e1e5e753c82db0/charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b", size = 95205 },
|
39 |
+
{ url = "https://files.pythonhosted.org/packages/1e/ab/45b180e175de4402dcf7547e4fb617283bae54ce35c27930a6f35b6bef15/charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76", size = 102441 },
|
40 |
+
{ url = "https://files.pythonhosted.org/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545", size = 196105 },
|
41 |
+
{ url = "https://files.pythonhosted.org/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7", size = 140404 },
|
42 |
+
{ url = "https://files.pythonhosted.org/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757", size = 150423 },
|
43 |
+
{ url = "https://files.pythonhosted.org/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa", size = 143184 },
|
44 |
+
{ url = "https://files.pythonhosted.org/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d", size = 145268 },
|
45 |
+
{ url = "https://files.pythonhosted.org/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616", size = 147601 },
|
46 |
+
{ url = "https://files.pythonhosted.org/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b", size = 141098 },
|
47 |
+
{ url = "https://files.pythonhosted.org/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d", size = 149520 },
|
48 |
+
{ url = "https://files.pythonhosted.org/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a", size = 152852 },
|
49 |
+
{ url = "https://files.pythonhosted.org/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9", size = 150488 },
|
50 |
+
{ url = "https://files.pythonhosted.org/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1", size = 146192 },
|
51 |
+
{ url = "https://files.pythonhosted.org/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35", size = 95550 },
|
52 |
+
{ url = "https://files.pythonhosted.org/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f", size = 102785 },
|
53 |
+
{ url = "https://files.pythonhosted.org/packages/38/94/ce8e6f63d18049672c76d07d119304e1e2d7c6098f0841b51c666e9f44a0/charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda", size = 195698 },
|
54 |
+
{ url = "https://files.pythonhosted.org/packages/24/2e/dfdd9770664aae179a96561cc6952ff08f9a8cd09a908f259a9dfa063568/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313", size = 140162 },
|
55 |
+
{ url = "https://files.pythonhosted.org/packages/24/4e/f646b9093cff8fc86f2d60af2de4dc17c759de9d554f130b140ea4738ca6/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9", size = 150263 },
|
56 |
+
{ url = "https://files.pythonhosted.org/packages/5e/67/2937f8d548c3ef6e2f9aab0f6e21001056f692d43282b165e7c56023e6dd/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b", size = 142966 },
|
57 |
+
{ url = "https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11", size = 144992 },
|
58 |
+
{ url = "https://files.pythonhosted.org/packages/96/2c/d49710a6dbcd3776265f4c923bb73ebe83933dfbaa841c5da850fe0fd20b/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f", size = 147162 },
|
59 |
+
{ url = "https://files.pythonhosted.org/packages/b4/41/35ff1f9a6bd380303dea55e44c4933b4cc3c4850988927d4082ada230273/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd", size = 140972 },
|
60 |
+
{ url = "https://files.pythonhosted.org/packages/fb/43/c6a0b685fe6910d08ba971f62cd9c3e862a85770395ba5d9cad4fede33ab/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2", size = 149095 },
|
61 |
+
{ url = "https://files.pythonhosted.org/packages/4c/ff/a9a504662452e2d2878512115638966e75633519ec11f25fca3d2049a94a/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886", size = 152668 },
|
62 |
+
{ url = "https://files.pythonhosted.org/packages/6c/71/189996b6d9a4b932564701628af5cee6716733e9165af1d5e1b285c530ed/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601", size = 150073 },
|
63 |
+
{ url = "https://files.pythonhosted.org/packages/e4/93/946a86ce20790e11312c87c75ba68d5f6ad2208cfb52b2d6a2c32840d922/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd", size = 145732 },
|
64 |
+
{ url = "https://files.pythonhosted.org/packages/cd/e5/131d2fb1b0dddafc37be4f3a2fa79aa4c037368be9423061dccadfd90091/charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407", size = 95391 },
|
65 |
+
{ url = "https://files.pythonhosted.org/packages/27/f2/4f9a69cc7712b9b5ad8fdb87039fd89abba997ad5cbe690d1835d40405b0/charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971", size = 102702 },
|
66 |
+
{ url = "https://files.pythonhosted.org/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85", size = 49767 },
|
67 |
]
|
68 |
|
69 |
[[package]]
|
|
|
133 |
[[package]]
|
134 |
name = "cudf-polars-cu12"
|
135 |
version = "24.12.0"
|
136 |
+
source = { registry = "https://pypi.org/simple" }
|
137 |
dependencies = [
|
138 |
{ name = "polars" },
|
139 |
{ name = "pylibcudf-cu12" },
|
140 |
]
|
141 |
wheels = [
|
142 |
+
{ url = "https://files.pythonhosted.org/packages/0f/6e/3d0b2d19ac853347f435f49815d471d461315d8f6e74f165624f16ddc7db/cudf_polars_cu12-24.12.0-py3-none-any.whl", hash = "sha256:3d2058f75251fd4921618bb1d4cfba0c99b670a12756df0d3f51559aca2298fa", size = 79456 },
|
143 |
]
|
144 |
|
145 |
[[package]]
|
|
|
229 |
{ url = "https://files.pythonhosted.org/packages/99/3b/406d17b1f63e04a82aa621936e6e1c53a8c05458abd66300ac85ea7f9ae9/fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977", size = 1111638 },
|
230 |
]
|
231 |
|
232 |
+
[[package]]
|
233 |
+
name = "geopandas"
|
234 |
+
version = "1.0.1"
|
235 |
+
source = { registry = "https://pypi.org/simple" }
|
236 |
+
dependencies = [
|
237 |
+
{ name = "numpy" },
|
238 |
+
{ name = "packaging" },
|
239 |
+
{ name = "pandas" },
|
240 |
+
{ name = "pyogrio" },
|
241 |
+
{ name = "pyproj" },
|
242 |
+
{ name = "shapely" },
|
243 |
+
]
|
244 |
+
sdist = { url = "https://files.pythonhosted.org/packages/39/08/2cf5d85356e45b10b8d066cf4c3ba1e9e3185423c48104eed87e8afd0455/geopandas-1.0.1.tar.gz", hash = "sha256:b8bf70a5534588205b7a56646e2082fb1de9a03599651b3d80c99ea4c2ca08ab", size = 317736 }
|
245 |
+
wheels = [
|
246 |
+
{ url = "https://files.pythonhosted.org/packages/c4/64/7d344cfcef5efddf9cf32f59af7f855828e9d74b5f862eddf5bfd9f25323/geopandas-1.0.1-py3-none-any.whl", hash = "sha256:01e147d9420cc374d26f51fc23716ac307f32b49406e4bd8462c07e82ed1d3d6", size = 323587 },
|
247 |
+
]
|
248 |
+
|
249 |
[[package]]
|
250 |
name = "grand-cypher"
|
251 |
version = "0.12.0"
|
|
|
267 |
sdist = { url = "https://files.pythonhosted.org/packages/65/c6/27400e2d81bd769ebe65c695cead44c8efb55ac3769826a01c9223d65709/grandiso-2.2.0.tar.gz", hash = "sha256:66f292d27328e13122065c7905ad0ac79c4649f69a35e7b98a3631654a0bf77c", size = 16277 }
|
268 |
|
269 |
[[package]]
|
270 |
+
name = "idna"
|
271 |
+
version = "3.10"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
source = { registry = "https://pypi.org/simple" }
|
273 |
+
sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 }
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
wheels = [
|
275 |
+
{ url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 },
|
276 |
]
|
277 |
|
278 |
[[package]]
|
279 |
+
name = "joblib"
|
280 |
+
version = "1.4.2"
|
281 |
source = { registry = "https://pypi.org/simple" }
|
282 |
+
sdist = { url = "https://files.pythonhosted.org/packages/64/33/60135848598c076ce4b231e1b1895170f45fbcaeaa2c9d5e38b04db70c35/joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e", size = 2116621 }
|
283 |
wheels = [
|
284 |
+
{ url = "https://files.pythonhosted.org/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6", size = 301817 },
|
285 |
]
|
286 |
|
287 |
[[package]]
|
|
|
362 |
[[package]]
|
363 |
name = "libcudf-cu12"
|
364 |
version = "24.12.0"
|
365 |
+
source = { registry = "https://pypi.org/simple" }
|
366 |
dependencies = [
|
367 |
{ name = "libkvikio-cu12" },
|
368 |
{ name = "nvidia-nvcomp-cu12" },
|
369 |
]
|
370 |
wheels = [
|
371 |
+
{ url = "https://files.pythonhosted.org/packages/fa/ea/efccbbeb4012cdd247e3d12ed19c4cd70a770e6c22c1456d8cb569818083/libcudf_cu12-24.12.0-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:1e78a247f31c6045221f3142a5fd15210d53c91043c5a4e260b67b5ddff43164", size = 454436993 },
|
372 |
+
{ url = "https://files.pythonhosted.org/packages/88/93/dc3a27c3904aa12a32def0df330f15a85d0f01e0420b18bc0efa8b3245ba/libcudf_cu12-24.12.0-py3-none-manylinux_2_28_x86_64.whl", hash = "sha256:47b7537a314b4462c24938f4e9118ea65bfe2de7440e99ecf278a38a14abf9ab", size = 457847164 },
|
373 |
]
|
374 |
|
375 |
[[package]]
|
376 |
name = "libkvikio-cu12"
|
377 |
version = "24.12.1"
|
378 |
+
source = { registry = "https://pypi.org/simple" }
|
379 |
wheels = [
|
380 |
+
{ url = "https://files.pythonhosted.org/packages/24/17/8dbef99dc5a73dbf56dea090ba1c345cc4343bf8d13f331a8091d0e1c362/libkvikio_cu12-24.12.1-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:7ed5d27263204a237ea7a14ce176ed885888c8daf47341ae0fbcecd55fb2c694", size = 1875299 },
|
381 |
+
{ url = "https://files.pythonhosted.org/packages/0a/31/3be8facaf2f15849629a030e8fb1696ec80228270860b9ffd869a17a6a71/libkvikio_cu12-24.12.1-py3-none-manylinux_2_28_x86_64.whl", hash = "sha256:c4f333dbbffc35ba94a028db3b24ddb1c3dfddff9c6fb0f17488dc662a86f481", size = 1989095 },
|
382 |
]
|
383 |
|
384 |
[[package]]
|
|
|
410 |
source = { virtual = "." }
|
411 |
dependencies = [
|
412 |
{ name = "grand-cypher" },
|
413 |
+
{ name = "joblib" },
|
414 |
{ name = "lynxkite-core" },
|
415 |
{ name = "matplotlib" },
|
416 |
{ name = "networkx" },
|
417 |
+
{ name = "osmnx" },
|
418 |
{ name = "pandas" },
|
419 |
{ name = "polars", extra = ["gpu"] },
|
420 |
]
|
421 |
|
422 |
[package.optional-dependencies]
|
423 |
gpu = [
|
424 |
+
{ name = "nx-cugraph-cu12" },
|
425 |
]
|
426 |
|
427 |
[package.metadata]
|
428 |
requires-dist = [
|
429 |
{ name = "grand-cypher", specifier = ">=0.12.0" },
|
430 |
+
{ name = "joblib", specifier = ">=1.4.2" },
|
431 |
{ name = "lynxkite-core", virtual = "../lynxkite-core" },
|
432 |
{ name = "matplotlib", specifier = ">=3.10.0" },
|
433 |
{ name = "networkx", specifier = ">=3.4.2" },
|
434 |
+
{ name = "nx-cugraph-cu12", marker = "extra == 'gpu'", specifier = ">=24.12.0" },
|
435 |
+
{ name = "osmnx", specifier = ">=2.0.1" },
|
436 |
{ name = "pandas", specifier = ">=2.2.3" },
|
437 |
{ name = "polars", extras = ["gpu"], specifier = ">=1.14.0" },
|
438 |
]
|
|
|
542 |
[[package]]
|
543 |
name = "nvidia-cublas-cu12"
|
544 |
version = "12.8.3.14"
|
545 |
+
source = { registry = "https://pypi.org/simple" }
|
546 |
wheels = [
|
547 |
+
{ url = "https://files.pythonhosted.org/packages/ed/63/684a6f72f52671ea222c12ecde9bdf748a0ba025e2ad3ec374e466c26eb6/nvidia_cublas_cu12-12.8.3.14-py3-none-manylinux_2_27_aarch64.whl", hash = "sha256:93a4e0e386cc7f6e56c822531396de8170ed17068a1e18f987574895044cd8c3", size = 604900717 },
|
548 |
+
{ url = "https://files.pythonhosted.org/packages/82/df/4b01f10069e23c641f116c62fc31e31e8dc361a153175d81561d15c8143b/nvidia_cublas_cu12-12.8.3.14-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:3f0e05e7293598cf61933258b73e66a160c27d59c4422670bf0b79348c04be44", size = 609620630 },
|
549 |
+
{ url = "https://files.pythonhosted.org/packages/6c/54/fbfa3315b936d3358517f7da5f9f2557c279bf210e5261f0cf66cc0f9832/nvidia_cublas_cu12-12.8.3.14-py3-none-win_amd64.whl", hash = "sha256:9ae5eae500aead01fc4bdfc458209df638b1a3551557ce11a78eea9ece602ae9", size = 578387959 },
|
550 |
]
|
551 |
|
552 |
[[package]]
|
553 |
name = "nvidia-curand-cu12"
|
554 |
version = "10.3.9.55"
|
555 |
+
source = { registry = "https://pypi.org/simple" }
|
556 |
wheels = [
|
557 |
+
{ url = "https://files.pythonhosted.org/packages/f4/13/bbcf48e2f8a6a9adef58f130bc968810528a4e66bbbe62fad335241e699f/nvidia_curand_cu12-10.3.9.55-py3-none-manylinux_2_27_aarch64.whl", hash = "sha256:b6bb90c044fa9b07cedae2ef29077c4cf851fb6fdd6d862102321f359dca81e9", size = 63623836 },
|
558 |
+
{ url = "https://files.pythonhosted.org/packages/bd/fc/7be5d0082507269bb04ac07cc614c84b78749efb96e8cf4100a8a1178e98/nvidia_curand_cu12-10.3.9.55-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:8387d974240c91f6a60b761b83d4b2f9b938b7e0b9617bae0f0dafe4f5c36b86", size = 63618038 },
|
559 |
+
{ url = "https://files.pythonhosted.org/packages/d6/f0/91252f3cffe3f3c233a8e17262c21b41534652edfe783c1e58ea1c92c115/nvidia_curand_cu12-10.3.9.55-py3-none-win_amd64.whl", hash = "sha256:570d82475fe7f3d8ed01ffbe3b71796301e0e24c98762ca018ff8ce4f5418e1f", size = 62761446 },
|
560 |
]
|
561 |
|
562 |
[[package]]
|
563 |
name = "nvidia-cusolver-cu12"
|
564 |
version = "11.7.2.55"
|
565 |
+
source = { registry = "https://pypi.org/simple" }
|
566 |
dependencies = [
|
567 |
{ name = "nvidia-cublas-cu12" },
|
568 |
{ name = "nvidia-cusparse-cu12" },
|
569 |
{ name = "nvidia-nvjitlink-cu12" },
|
570 |
]
|
571 |
wheels = [
|
572 |
+
{ url = "https://files.pythonhosted.org/packages/8c/ce/4214a892e804b20bf66d04f04a473006fc2d3dac158160ef85f1bc906639/nvidia_cusolver_cu12-11.7.2.55-py3-none-manylinux_2_27_aarch64.whl", hash = "sha256:0fd9e98246f43c15bee5561147ad235dfdf2d037f5d07c9d41af3f7f72feb7cc", size = 260094827 },
|
573 |
+
{ url = "https://files.pythonhosted.org/packages/c2/08/953675873a136d96bb12f93b49ba045d1107bc94d2551c52b12fa6c7dec3/nvidia_cusolver_cu12-11.7.2.55-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4d1354102f1e922cee9db51920dba9e2559877cf6ff5ad03a00d853adafb191b", size = 260373342 },
|
574 |
+
{ url = "https://files.pythonhosted.org/packages/c4/f9/e0e6f8b7aecd13e0f9e937d116fb3211329a0a92b9bea9624b1368de307a/nvidia_cusolver_cu12-11.7.2.55-py3-none-win_amd64.whl", hash = "sha256:a5a516c55da5c5aba98420d9bc9bcab18245f21ec87338cc1f930eb18dd411ac", size = 249600787 },
|
575 |
]
|
576 |
|
577 |
[[package]]
|
578 |
name = "nvidia-cusparse-cu12"
|
579 |
version = "12.5.7.53"
|
580 |
+
source = { registry = "https://pypi.org/simple" }
|
581 |
dependencies = [
|
582 |
{ name = "nvidia-nvjitlink-cu12" },
|
583 |
]
|
584 |
wheels = [
|
585 |
+
{ url = "https://files.pythonhosted.org/packages/2e/a2/313db0453087f5324a5900380ca2e57e050c8de76f407b5e11383dc762ae/nvidia_cusparse_cu12-12.5.7.53-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d869c6146ca80f4305b62e02d924b4aaced936f8173e3cef536a67eed2a91af1", size = 291963692 },
|
586 |
+
{ url = "https://files.pythonhosted.org/packages/c2/ab/31e8149c66213b846c082a3b41b1365b831f41191f9f40c6ddbc8a7d550e/nvidia_cusparse_cu12-12.5.7.53-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3c1b61eb8c85257ea07e9354606b26397612627fdcd327bfd91ccf6155e7c86d", size = 292064180 },
|
587 |
+
{ url = "https://files.pythonhosted.org/packages/7c/48/64b01653919a3d1d9b5117c156806ab0db8312c7496ff646477a5c1545bf/nvidia_cusparse_cu12-12.5.7.53-py3-none-win_amd64.whl", hash = "sha256:82c201d6781bacf6bb7c654f0446728d0fe596dfdd82ef4a04c204ce3e107441", size = 288767123 },
|
588 |
]
|
589 |
|
590 |
[[package]]
|
591 |
name = "nvidia-nvcomp-cu12"
|
592 |
version = "4.1.0.6"
|
593 |
+
source = { registry = "https://pypi.org/simple" }
|
594 |
wheels = [
|
595 |
+
{ url = "https://files.pythonhosted.org/packages/91/51/17e3acc3b53e5a6d97db7ed79035e8b5f13aefa1f5a8e703287418eac2b4/nvidia_nvcomp_cu12-4.1.0.6-py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:3bff6267fa6aae59a98155262e5e9da6142e798dac5afd01f7389b23bce89803", size = 28724365 },
|
596 |
+
{ url = "https://files.pythonhosted.org/packages/f6/3e/c90004db47c527c4f253c1c866facefbd2a5059ba50035a6967712b3b125/nvidia_nvcomp_cu12-4.1.0.6-py3-none-manylinux_2_28_x86_64.whl", hash = "sha256:aaff831f0fdbf20631df32e411ede37ddf5fd7297f78e77346441cd0d72cb787", size = 28944826 },
|
597 |
+
{ url = "https://files.pythonhosted.org/packages/ef/97/be4151c26d13741237e1b58d6fac097b79b552bee4a9c89d7f150c4959fb/nvidia_nvcomp_cu12-4.1.0.6-py3-none-win_amd64.whl", hash = "sha256:df24bedfe9df8be67ae7c59f5d21223f082c5ce689679909ee4985c563a0a89f", size = 75296662 },
|
598 |
]
|
599 |
|
600 |
[[package]]
|
601 |
name = "nvidia-nvjitlink-cu12"
|
602 |
version = "12.8.61"
|
603 |
+
source = { registry = "https://pypi.org/simple" }
|
604 |
wheels = [
|
605 |
+
{ url = "https://files.pythonhosted.org/packages/03/f8/9d85593582bd99b8d7c65634d2304780aefade049b2b94d96e44084be90b/nvidia_nvjitlink_cu12-12.8.61-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:45fd79f2ae20bd67e8bc411055939049873bfd8fac70ff13bd4865e0b9bdab17", size = 39243473 },
|
606 |
+
{ url = "https://files.pythonhosted.org/packages/af/53/698f3758f48c5fcb1112721e40cc6714da3980d3c7e93bae5b29dafa9857/nvidia_nvjitlink_cu12-12.8.61-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:9b80ecab31085dda3ce3b41d043be0ec739216c3fc633b8abe212d5a30026df0", size = 38374634 },
|
607 |
+
{ url = "https://files.pythonhosted.org/packages/7f/c6/0d1b2bfeb2ef42c06db0570c4d081e5cde4450b54c09e43165126cfe6ff6/nvidia_nvjitlink_cu12-12.8.61-py3-none-win_amd64.whl", hash = "sha256:1166a964d25fdc0eae497574d38824305195a5283324a21ccb0ce0c802cbf41c", size = 268514099 },
|
608 |
]
|
609 |
|
610 |
[[package]]
|
|
|
622 |
[[package]]
|
623 |
name = "nx-cugraph-cu12"
|
624 |
version = "24.12.0"
|
625 |
+
source = { registry = "https://pypi.org/simple" }
|
626 |
dependencies = [
|
627 |
{ name = "cupy-cuda12x" },
|
628 |
{ name = "networkx" },
|
629 |
{ name = "numpy" },
|
630 |
{ name = "pylibcugraph-cu12" },
|
631 |
]
|
632 |
+
sdist = { url = "https://files.pythonhosted.org/packages/2e/a1/e968a05bc2980fa4ad66b3fe8e5411a48c3079f6faa4d4ed89d29d82a956/nx_cugraph_cu12-24.12.0.tar.gz", hash = "sha256:a21b60b57cad982678570a69cbbe6d58fb171b12e8c99b296f68bf89ac517813", size = 5259 }
|
633 |
+
|
634 |
+
[[package]]
|
635 |
+
name = "osmnx"
|
636 |
+
version = "2.0.1"
|
637 |
+
source = { registry = "https://pypi.org/simple" }
|
638 |
+
dependencies = [
|
639 |
+
{ name = "geopandas" },
|
640 |
+
{ name = "networkx" },
|
641 |
+
{ name = "numpy" },
|
642 |
+
{ name = "pandas" },
|
643 |
+
{ name = "requests" },
|
644 |
+
{ name = "shapely" },
|
645 |
+
]
|
646 |
+
sdist = { url = "https://files.pythonhosted.org/packages/15/c4/dec0738e6defe0299ebb51a39b6c624f4093faad1f67e684859ba312dd30/osmnx-2.0.1.tar.gz", hash = "sha256:24bb7dc4c0d548ce11a61a79de08bdeea7d74f2d1889a93b60da825051c0e374", size = 86437 }
|
647 |
wheels = [
|
648 |
+
{ url = "https://files.pythonhosted.org/packages/77/59/4de56d8db7694831bea788de3a44e196a73f5c1053560b2ccf18282782c8/osmnx-2.0.1-py3-none-any.whl", hash = "sha256:6532b28f4eaf0c7621f03f77873e64c2e4de5bf46aeafb4faa84413bc9f34f62", size = 99641 },
|
649 |
]
|
650 |
|
651 |
[[package]]
|
|
|
803 |
[[package]]
|
804 |
name = "pylibcudf-cu12"
|
805 |
version = "24.12.0"
|
806 |
+
source = { registry = "https://pypi.org/simple" }
|
807 |
dependencies = [
|
808 |
{ name = "cuda-python" },
|
809 |
{ name = "libcudf-cu12" },
|
|
|
814 |
{ name = "typing-extensions" },
|
815 |
]
|
816 |
wheels = [
|
817 |
+
{ url = "https://files.pythonhosted.org/packages/ee/0f/5a78a8bb72726de1ea50735c2e02588564542b8a0ad1069a067d9fe8e301/pylibcudf_cu12-24.12.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4c61587a6d9e9f392745b9b238f3eebcfacbbf21e3c7d9fedf7a1a672284fcce", size = 36400678 },
|
818 |
+
{ url = "https://files.pythonhosted.org/packages/98/c9/66fe3954244f809b5b9a201e33d7cf8c663b09b0911443374b01333fe28a/pylibcudf_cu12-24.12.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6459baed065bc76fbc7ef34e14912982971c1a9d4bffb2699909d78a95b0b8a3", size = 37259282 },
|
819 |
+
{ url = "https://files.pythonhosted.org/packages/fa/1b/5f43e550262de73dfab17bbc8b2ee3f0add116be28c7ed6ba61a53135859/pylibcudf_cu12-24.12.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:dd130e347c28716912b89a1f7ff653ca6e202bfbc79f5abbedd7918bb9124f34", size = 36317440 },
|
820 |
+
{ url = "https://files.pythonhosted.org/packages/8e/2c/653ca775cefafeea2158d0c94296e6b78e050af2892f89fe21697bb737af/pylibcudf_cu12-24.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5e2bb951f1a2fddf1976b84aa4e6d1280689da22014d6d1d5f48364cc1b32e2d", size = 37180377 },
|
821 |
]
|
822 |
|
823 |
[[package]]
|
824 |
name = "pylibcugraph-cu12"
|
825 |
version = "24.12.0"
|
826 |
+
source = { registry = "https://pypi.org/simple" }
|
827 |
dependencies = [
|
828 |
{ name = "nvidia-cublas-cu12" },
|
829 |
{ name = "nvidia-curand-cu12" },
|
|
|
832 |
{ name = "pylibraft-cu12" },
|
833 |
{ name = "rmm-cu12" },
|
834 |
]
|
835 |
+
sdist = { url = "https://files.pythonhosted.org/packages/78/0f/10642063a2b228a3e9e192f5fbb1e9cf2b3914025bcb3f77fbf93d97b9b4/pylibcugraph_cu12-24.12.0.tar.gz", hash = "sha256:f8943c94db9333c53193fc575dd426f50dbdefe26c96c6715d5bbebd130b3a86", size = 3773 }
|
|
|
|
|
|
|
|
|
|
|
836 |
|
837 |
[[package]]
|
838 |
name = "pylibraft-cu12"
|
839 |
version = "24.12.0"
|
840 |
+
source = { registry = "https://pypi.org/simple" }
|
841 |
dependencies = [
|
842 |
{ name = "cuda-python" },
|
843 |
{ name = "numpy" },
|
|
|
847 |
{ name = "nvidia-cusparse-cu12" },
|
848 |
{ name = "rmm-cu12" },
|
849 |
]
|
850 |
+
sdist = { url = "https://files.pythonhosted.org/packages/97/21/7528b474119607168aae1e94148614761effbec8c45ae31f323ea75e7d68/pylibraft_cu12-24.12.0.tar.gz", hash = "sha256:88370c81ec6cad13c14f5b6df18845596cfb067f9c009d8d118fc0a2f3c78833", size = 5613 }
|
851 |
+
|
852 |
+
[[package]]
|
853 |
+
name = "pyogrio"
|
854 |
+
version = "0.10.0"
|
855 |
+
source = { registry = "https://pypi.org/simple" }
|
856 |
+
dependencies = [
|
857 |
+
{ name = "certifi" },
|
858 |
+
{ name = "numpy" },
|
859 |
+
{ name = "packaging" },
|
860 |
+
]
|
861 |
+
sdist = { url = "https://files.pythonhosted.org/packages/a5/8f/5a784595524a79c269f2b1c880f4fdb152867df700c97005dda51997da02/pyogrio-0.10.0.tar.gz", hash = "sha256:ec051cb568324de878828fae96379b71858933413e185148acb6c162851ab23c", size = 281950 }
|
862 |
wheels = [
|
863 |
+
{ url = "https://files.pythonhosted.org/packages/8d/2c/c761e6adeb81bd4029a137b3240e7214a8c9aaf225883356196afd6ef9d8/pyogrio-0.10.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5b1a51431a27a1cb3e4e19558939c1423106e06e7b67d6285f4fba9c2d0a91b9", size = 15083526 },
|
864 |
+
{ url = "https://files.pythonhosted.org/packages/c3/e5/983aa9ddf2ff784e973d6b2ec3e874065d6655a5329ca26311b0f3b9f92f/pyogrio-0.10.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:216d69cd77b2b4a0c9d7d449bc239f8b77f3d73f4a05d9c738a0745b236902d8", size = 16457867 },
|
865 |
+
{ url = "https://files.pythonhosted.org/packages/fa/9a/7103eee7aa3b6ec88e072ef18a05c3aae1ed96fe00009a7a5ce139b50f30/pyogrio-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2f0b75f0077ce33256aec6278c2a9c3b79bf0637ddf4f93d3ab2609f0501d96", size = 23926332 },
|
866 |
+
{ url = "https://files.pythonhosted.org/packages/8b/b2/2ca124343aba24b9a5dcd7c1f43da81e652849cfaf3110d3f507a80af0a1/pyogrio-0.10.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:0a47f702d29808c557d2ebea8542c23903f021eae44e16838adef2ab4281c71b", size = 23138693 },
|
867 |
+
{ url = "https://files.pythonhosted.org/packages/ae/15/501aa4823c142232169d54255ab343f28c4ea9e7fa489b8433dcc873a942/pyogrio-0.10.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:11e6c71d12da6b445e77d0fc0198db1bd35a77e03a0685e45338cbab9ce02add", size = 24062952 },
|
868 |
+
{ url = "https://files.pythonhosted.org/packages/94/8d/24f21e6a93ca418231aee3bddade7a0766c89c523832f29e08a8860f83e6/pyogrio-0.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:d0d74e91a9c0ff2f9abe01b556ff663977193b2d6922208406172d0fc833beff", size = 16172573 },
|
869 |
+
{ url = "https://files.pythonhosted.org/packages/b5/b5/3c5dfd0b50cbce6f3d4e42c0484647feb1809dbe20e225c4c6abd067e69f/pyogrio-0.10.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2d6558b180e020f71ab7aa7f82d592ed3305c9f698d98f6d0a4637ec7a84c4ce", size = 15079211 },
|
870 |
+
{ url = "https://files.pythonhosted.org/packages/b8/9a/1ba9c707a094976f343bd0177741eaba0e842fa05ecd8ab97192db4f2ec1/pyogrio-0.10.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:a99102037eead8ba491bc57825c1e395ee31c9956d7bff7b4a9e4fdbff3a13c2", size = 16442782 },
|
871 |
+
{ url = "https://files.pythonhosted.org/packages/5e/bb/b4250746c2c85fea5004cae93e9e25ad01516e9e94e04de780a2e78139da/pyogrio-0.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a4c373281d7cbf560c5b61f8f3c7442103ad7f1c7ac4ef3a84572ed7a5dd2f6", size = 23899832 },
|
872 |
+
{ url = "https://files.pythonhosted.org/packages/bd/4c/79e47e40a8e54e79a45133786a0a58209534f580591c933d40c5ed314fe7/pyogrio-0.10.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:19f18411bdf836d24cdc08b9337eb3ec415e4ac4086ba64516b36b73a2e88622", size = 23081469 },
|
873 |
+
{ url = "https://files.pythonhosted.org/packages/47/78/2b62c8a340bcb0ea56b9ddf2ef5fd3d1f101dc0e98816b9e6da87c5ac3b7/pyogrio-0.10.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:1abbcdd9876f30bebf1df8a0273f6cdeb29d03259290008275c7fddebe139f20", size = 24024758 },
|
874 |
+
{ url = "https://files.pythonhosted.org/packages/43/97/34605480f06b0ad9611bf58a174eccc6f3673275f3d519cf763391892881/pyogrio-0.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a3e09839590d71ff832aa95c4f23fa00a2c63c3de82c1fbd4fb8d265792acfc", size = 16160294 },
|
875 |
+
{ url = "https://files.pythonhosted.org/packages/14/4a/4c8e4f5b9edbca46e0f8d6c1c0b56c0d4af0900c29f4bea22d37853c07f3/pyogrio-0.10.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:c90478209537a31dcc65664a87a04c094bb0e08efe502908a6682b8cec0259bf", size = 15076879 },
|
876 |
+
{ url = "https://files.pythonhosted.org/packages/5f/be/7db0644eef9ef3382518399aaf3332827c43018112d2a74f78784fd496ec/pyogrio-0.10.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:fec45e1963b7058e5a1aa98598aed07c0858512c833d6aad2c672c3ec98bbf04", size = 16440405 },
|
877 |
+
{ url = "https://files.pythonhosted.org/packages/96/77/f199230ba86fe88b1f57e71428c169ed982de68a32d6082cd7c12d0f5d55/pyogrio-0.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28cb139f8a5d0365ede602230104b407ae52bb6b55173c8d5a35424d28c4a2c5", size = 23871511 },
|
878 |
+
{ url = "https://files.pythonhosted.org/packages/25/ac/ca483bec408b59c54f7129b0244cc9de21d8461aefe89ece7bd74ad33807/pyogrio-0.10.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:cea0187fcc2d574e52af8cfab041fa0a7ad71d5ef6b94b49a3f3d2a04534a27e", size = 23048830 },
|
879 |
+
{ url = "https://files.pythonhosted.org/packages/d7/3e/c35f2d8dad95b24e568c468f09ff60fb61945065465e0ec7868400596566/pyogrio-0.10.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:7c02b207ea8cf09c501ea3e95d29152781a00d3c32267286bc36fa457c332205", size = 23996873 },
|
880 |
+
{ url = "https://files.pythonhosted.org/packages/27/5d/0deb16d228362a097ee3258d0a887c9c0add4b9678bb4847b08a241e124d/pyogrio-0.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:02e54bcfb305af75f829044b0045f74de31b77c2d6546f7aaf96822066147848", size = 16158260 },
|
881 |
]
|
882 |
|
883 |
[[package]]
|
|
|
889 |
{ url = "https://files.pythonhosted.org/packages/1c/a7/c8a2d361bf89c0d9577c934ebb7421b25dc84bf3a8e3ac0a40aed9acc547/pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1", size = 107716 },
|
890 |
]
|
891 |
|
892 |
+
[[package]]
|
893 |
+
name = "pyproj"
|
894 |
+
version = "3.7.0"
|
895 |
+
source = { registry = "https://pypi.org/simple" }
|
896 |
+
dependencies = [
|
897 |
+
{ name = "certifi" },
|
898 |
+
]
|
899 |
+
sdist = { url = "https://files.pythonhosted.org/packages/47/c2/0572c8e31aebf0270f15f3368adebd10fc473de9f09567a0743a3bc41c8d/pyproj-3.7.0.tar.gz", hash = "sha256:bf658f4aaf815d9d03c8121650b6f0b8067265c36e31bc6660b98ef144d81813", size = 225577 }
|
900 |
+
wheels = [
|
901 |
+
{ url = "https://files.pythonhosted.org/packages/e2/8f/15ff6ab10a08050e94afcd544962a1a930d0bb7ca102ad39795a847eb340/pyproj-3.7.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:e66d8d42dbdf232e121546c5a1dec097caf0454e4885c09a8e03cdcee0753c03", size = 6272213 },
|
902 |
+
{ url = "https://files.pythonhosted.org/packages/2d/4d/610fe2a17de71b4fe210af69ce25f2d65379ba0a48299129894d0d0988ee/pyproj-3.7.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:7764b64a0aefe40134a2828b3a40be88f6c8b7832c45d8a9f2bd592ace4b2a3b", size = 4634548 },
|
903 |
+
{ url = "https://files.pythonhosted.org/packages/d6/27/0327d0b0fcdfc4cf72696a2effca2963e524dcd846a0274ba503f8bf2648/pyproj-3.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53c442c5081dc95346996f5c4323fde2caafc69c6e60b4707aa46e88244f1e04", size = 6333913 },
|
904 |
+
{ url = "https://files.pythonhosted.org/packages/3c/e5/2cb256148c730b9c3f74bfb3c03904f5070499c6dcaea153073a9642c6c6/pyproj-3.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc5b305d4d5d7697885681d9b660623e328227612823d5c660e0a9566cb48838", size = 9460363 },
|
905 |
+
{ url = "https://files.pythonhosted.org/packages/ba/a3/4aa1e8e78ad18aa170efd2c94c1931bf2a34c526683b874d06e40fa323f6/pyproj-3.7.0-cp311-cp311-win32.whl", hash = "sha256:de2b47d748dc41cccb6b3b713d4d7dc9aa1046a82141c8665026908726426abc", size = 5820551 },
|
906 |
+
{ url = "https://files.pythonhosted.org/packages/26/0c/b084e8839a117eaad8cb4fbaa81bbb24c6f183de0ee95c6c4e2770ab6f09/pyproj-3.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:38cba7c4c5679e40242dd959133e95b908d3b912dd66291094fd13510e8517ff", size = 6231788 },
|
907 |
+
{ url = "https://files.pythonhosted.org/packages/bd/19/be806b711e9ebfb80411c653054157db128fffdd7f8493e3064136c8d880/pyproj-3.7.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:8cbec92bdd6e9933ca08795c12717d1384e9b51cf4b1acf0d753db255a75c51e", size = 6261400 },
|
908 |
+
{ url = "https://files.pythonhosted.org/packages/99/3b/8497995e8cae0049d013679c6a7ac6c57b816d590c733a388748dafe5af5/pyproj-3.7.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:8c4a8e4d3ba76c3adac3c087544cf92f7f9a19ea34946904a13fca48cc1c0106", size = 4637848 },
|
909 |
+
{ url = "https://files.pythonhosted.org/packages/ea/f7/2a5b46d6f8da913d58d44942ab06ca4803b5424b73259b15344cf90040f6/pyproj-3.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82624fb42aa31f6b1a860fbc0316babd07fd712642bc31022df4e9b4056bf463", size = 6324856 },
|
910 |
+
{ url = "https://files.pythonhosted.org/packages/36/83/c257771077bcf9da20d0e97abc834f9037c219986cc76d40183903a30464/pyproj-3.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:34e1bbb3f89c68d4a6835c40b2da8b27680eec60e8cc7cdb08c09bcc725b2b62", size = 9525831 },
|
911 |
+
{ url = "https://files.pythonhosted.org/packages/d6/50/a635de79def69fe03cdef3a4bd3bec780c30987bce3a15dd7099afb2506f/pyproj-3.7.0-cp312-cp312-win32.whl", hash = "sha256:952515d5592167ad4436b355485f82acebed2a49b46722159e4584b75a763dd3", size = 5811864 },
|
912 |
+
{ url = "https://files.pythonhosted.org/packages/a1/8b/96bc8c8f3eca4eb7fa3758fde0b755d1df30a19f494376e3ee8de1ef4e79/pyproj-3.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:0692f806224e8ed82fe4acfa57268ff444fdaf9f330689f24c0d96e59480cce1", size = 6224720 },
|
913 |
+
{ url = "https://files.pythonhosted.org/packages/bf/da/a17c452bea1ff4cd58d6dc573055b9c8fb6af114b7d2c694782aec770865/pyproj-3.7.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:94e8b903a9e83448fd2379c49dec3e8cd83c9ed36f54354e68b601cef56d5426", size = 6254898 },
|
914 |
+
{ url = "https://files.pythonhosted.org/packages/c2/31/ab07b389f2caa527c95ab2ea1940d28879bd2a19e67b2529cb3e94648d26/pyproj-3.7.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:64cb5c17d6f6305a8b978a40f95560c87c5b363fcac40632337955664437875a", size = 4628612 },
|
915 |
+
{ url = "https://files.pythonhosted.org/packages/1d/24/def3ded6529db3e3d8351ad73481730249ab57d8d876d502f86d7958ce06/pyproj-3.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c54e9bdda7ab9c4a5af50f9d6e6ee7704e05fafd504896b96ed1208c7aea098", size = 6315895 },
|
916 |
+
{ url = "https://files.pythonhosted.org/packages/dd/14/07314f78302105d199fb25e73376d723efe9c2ef3906463aae209913a6d3/pyproj-3.7.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24fa4e9e0abba875f9524808410cc520067eaf38fd5549ed0ef7c43ac39923c9", size = 9466144 },
|
917 |
+
{ url = "https://files.pythonhosted.org/packages/00/f2/2a116920db3496e3ff3c94d7d8d15da41374f35cfe1b9e79682eca500a61/pyproj-3.7.0-cp313-cp313-win32.whl", hash = "sha256:b9e8353fc3c79dc14d1f5ac758a1a6e4eee04102c3c0b138670f121f5ac52eb4", size = 5807180 },
|
918 |
+
{ url = "https://files.pythonhosted.org/packages/f8/33/3c8c6302717096b54aa14ccbb271045ba04629e21cbf348f2f2dc94f69b4/pyproj-3.7.0-cp313-cp313-win_amd64.whl", hash = "sha256:10a8dc6ec61af97c89ff032647d743f8dc023645773da42ef43f7ae1125b3509", size = 6218036 },
|
919 |
+
]
|
920 |
+
|
921 |
[[package]]
|
922 |
name = "python-dateutil"
|
923 |
version = "2.9.0.post0"
|
|
|
939 |
{ url = "https://files.pythonhosted.org/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725", size = 508002 },
|
940 |
]
|
941 |
|
942 |
+
[[package]]
|
943 |
+
name = "requests"
|
944 |
+
version = "2.32.3"
|
945 |
+
source = { registry = "https://pypi.org/simple" }
|
946 |
+
dependencies = [
|
947 |
+
{ name = "certifi" },
|
948 |
+
{ name = "charset-normalizer" },
|
949 |
+
{ name = "idna" },
|
950 |
+
{ name = "urllib3" },
|
951 |
+
]
|
952 |
+
sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 }
|
953 |
+
wheels = [
|
954 |
+
{ url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 },
|
955 |
+
]
|
956 |
+
|
957 |
[[package]]
|
958 |
name = "rmm-cu12"
|
959 |
version = "24.12.1"
|
960 |
+
source = { registry = "https://pypi.org/simple" }
|
961 |
dependencies = [
|
962 |
{ name = "cuda-python" },
|
963 |
{ name = "numba" },
|
964 |
{ name = "numpy" },
|
965 |
]
|
966 |
wheels = [
|
967 |
+
{ url = "https://files.pythonhosted.org/packages/0e/c3/b08d5282116dd930e68a0ccbdecd750880efc451e0d2150e764793f03070/rmm_cu12-24.12.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d509d735201d1b0bc05b3e148e23a6216eabcfec67006a4e9311b6c25766023f", size = 1933478 },
|
968 |
+
{ url = "https://files.pythonhosted.org/packages/c7/ce/c32c1a95d53b1a22aeb258af7afa68a73a995c6c2f533fb774d2078d3cca/rmm_cu12-24.12.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c1d6b166aaf9b81495ff33f2fe5a29ad12dc1ed6089daf9f387160e7734fc901", size = 1984701 },
|
969 |
+
{ url = "https://files.pythonhosted.org/packages/c2/4b/32f7920f130536e7e1a8ea7feb591cab7fcb85aaff28311c4e8057ec23da/rmm_cu12-24.12.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:317a6641fb37f3efa6e8eb76eeb568970a8c439e0090529520861fd139ef6f0c", size = 1923807 },
|
970 |
+
{ url = "https://files.pythonhosted.org/packages/1d/f2/56faa578aefdab498f6eb73dde3316f99390769786e0cdbb6c7a6abbbf86/rmm_cu12-24.12.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a9460a386e34f1921c8d06204f320d705511de899ababb45302d314da036da5a", size = 1975053 },
|
971 |
]
|
972 |
|
973 |
[[package]]
|
974 |
+
name = "shapely"
|
975 |
+
version = "2.0.7"
|
976 |
source = { registry = "https://pypi.org/simple" }
|
977 |
+
dependencies = [
|
978 |
+
{ name = "numpy" },
|
979 |
+
]
|
980 |
+
sdist = { url = "https://files.pythonhosted.org/packages/21/c0/a911d1fd765d07a2b6769ce155219a281bfbe311584ebe97340d75c5bdb1/shapely-2.0.7.tar.gz", hash = "sha256:28fe2997aab9a9dc026dc6a355d04e85841546b2a5d232ed953e3321ab958ee5", size = 283413 }
|
981 |
wheels = [
|
982 |
+
{ url = "https://files.pythonhosted.org/packages/1d/ad/21798c2fec013e289f8ab91d42d4d3299c315b8c4460c08c75fef0901713/shapely-2.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5cf23400cb25deccf48c56a7cdda8197ae66c0e9097fcdd122ac2007e320bc34", size = 1473091 },
|
983 |
+
{ url = "https://files.pythonhosted.org/packages/15/63/eef4f180f1b5859c70e7f91d2f2570643e5c61e7d7c40743d15f8c6cbc42/shapely-2.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8f1da01c04527f7da59ee3755d8ee112cd8967c15fab9e43bba936b81e2a013", size = 1332921 },
|
984 |
+
{ url = "https://files.pythonhosted.org/packages/fe/67/77851dd17738bbe7762a0ef1acf7bc499d756f68600dd68a987d78229412/shapely-2.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f623b64bb219d62014781120f47499a7adc30cf7787e24b659e56651ceebcb0", size = 2427949 },
|
985 |
+
{ url = "https://files.pythonhosted.org/packages/0b/a5/2c8dbb0f383519771df19164e3bf3a8895d195d2edeab4b6040f176ee28e/shapely-2.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e6d95703efaa64aaabf278ced641b888fc23d9c6dd71f8215091afd8a26a66e3", size = 2529282 },
|
986 |
+
{ url = "https://files.pythonhosted.org/packages/dc/4e/e1d608773c7fe4cde36d48903c0d6298e3233dc69412403783ac03fa5205/shapely-2.0.7-cp311-cp311-win32.whl", hash = "sha256:2f6e4759cf680a0f00a54234902415f2fa5fe02f6b05546c662654001f0793a2", size = 1295751 },
|
987 |
+
{ url = "https://files.pythonhosted.org/packages/27/57/8ec7c62012bed06731f7ee979da7f207bbc4b27feed5f36680b6a70df54f/shapely-2.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:b52f3ab845d32dfd20afba86675c91919a622f4627182daec64974db9b0b4608", size = 1442684 },
|
988 |
+
{ url = "https://files.pythonhosted.org/packages/4f/3e/ea100eec5811bafd0175eb21828a3be5b0960f65250f4474391868be7c0f/shapely-2.0.7-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4c2b9859424facbafa54f4a19b625a752ff958ab49e01bc695f254f7db1835fa", size = 1482451 },
|
989 |
+
{ url = "https://files.pythonhosted.org/packages/ce/53/c6a3487716fd32e1f813d2a9608ba7b72a8a52a6966e31c6443480a1d016/shapely-2.0.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5aed1c6764f51011d69a679fdf6b57e691371ae49ebe28c3edb5486537ffbd51", size = 1345765 },
|
990 |
+
{ url = "https://files.pythonhosted.org/packages/fd/dd/b35d7891d25cc11066a70fb8d8169a6a7fca0735dd9b4d563a84684969a3/shapely-2.0.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73c9ae8cf443187d784d57202199bf9fd2d4bb7d5521fe8926ba40db1bc33e8e", size = 2421540 },
|
991 |
+
{ url = "https://files.pythonhosted.org/packages/62/de/8dbd7df60eb23cb983bb698aac982944b3d602ef0ce877a940c269eae34e/shapely-2.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9469f49ff873ef566864cb3516091881f217b5d231c8164f7883990eec88b73", size = 2525741 },
|
992 |
+
{ url = "https://files.pythonhosted.org/packages/96/64/faf0413ebc7a84fe7a0790bf39ec0b02b40132b68e57aba985c0b6e4e7b6/shapely-2.0.7-cp312-cp312-win32.whl", hash = "sha256:6bca5095e86be9d4ef3cb52d56bdd66df63ff111d580855cb8546f06c3c907cd", size = 1296552 },
|
993 |
+
{ url = "https://files.pythonhosted.org/packages/63/05/8a1c279c226d6ad7604d9e237713dd21788eab96db97bf4ce0ea565e5596/shapely-2.0.7-cp312-cp312-win_amd64.whl", hash = "sha256:f86e2c0259fe598c4532acfcf638c1f520fa77c1275912bbc958faecbf00b108", size = 1443464 },
|
994 |
+
{ url = "https://files.pythonhosted.org/packages/c6/21/abea43effbfe11f792e44409ee9ad7635aa93ef1c8ada0ef59b3c1c3abad/shapely-2.0.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a0c09e3e02f948631c7763b4fd3dd175bc45303a0ae04b000856dedebefe13cb", size = 1481618 },
|
995 |
+
{ url = "https://files.pythonhosted.org/packages/d9/71/af688798da36fe355a6e6ffe1d4628449cb5fa131d57fc169bcb614aeee7/shapely-2.0.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:06ff6020949b44baa8fc2e5e57e0f3d09486cd5c33b47d669f847c54136e7027", size = 1345159 },
|
996 |
+
{ url = "https://files.pythonhosted.org/packages/67/47/f934fe2b70d31bb9774ad4376e34f81666deed6b811306ff574faa3d115e/shapely-2.0.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d6dbf096f961ca6bec5640e22e65ccdec11e676344e8157fe7d636e7904fd36", size = 2410267 },
|
997 |
+
{ url = "https://files.pythonhosted.org/packages/f5/8a/2545cc2a30afc63fc6176c1da3b76af28ef9c7358ed4f68f7c6a9d86cf5b/shapely-2.0.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adeddfb1e22c20548e840403e5e0b3d9dc3daf66f05fa59f1fcf5b5f664f0e98", size = 2514128 },
|
998 |
+
{ url = "https://files.pythonhosted.org/packages/87/54/2344ce7da39676adec94e84fbaba92a8f1664e4ae2d33bd404dafcbe607f/shapely-2.0.7-cp313-cp313-win32.whl", hash = "sha256:a7f04691ce1c7ed974c2f8b34a1fe4c3c5dfe33128eae886aa32d730f1ec1913", size = 1295783 },
|
999 |
+
{ url = "https://files.pythonhosted.org/packages/d7/1e/6461e5cfc8e73ae165b8cff6eb26a4d65274fad0e1435137c5ba34fe4e88/shapely-2.0.7-cp313-cp313-win_amd64.whl", hash = "sha256:aaaf5f7e6cc234c1793f2a2760da464b604584fb58c6b6d7d94144fd2692d67e", size = 1442300 },
|
1000 |
]
|
1001 |
|
1002 |
[[package]]
|
1003 |
+
name = "six"
|
1004 |
+
version = "1.17.0"
|
1005 |
source = { registry = "https://pypi.org/simple" }
|
1006 |
+
sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 }
|
1007 |
wheels = [
|
1008 |
+
{ url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 },
|
1009 |
]
|
1010 |
|
1011 |
[[package]]
|
|
|
1025 |
wheels = [
|
1026 |
{ url = "https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd", size = 346586 },
|
1027 |
]
|
1028 |
+
|
1029 |
+
[[package]]
|
1030 |
+
name = "urllib3"
|
1031 |
+
version = "2.3.0"
|
1032 |
+
source = { registry = "https://pypi.org/simple" }
|
1033 |
+
sdist = { url = "https://files.pythonhosted.org/packages/aa/63/e53da845320b757bf29ef6a9062f5c669fe997973f966045cb019c3f4b66/urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d", size = 307268 }
|
1034 |
+
wheels = [
|
1035 |
+
{ url = "https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df", size = 128369 },
|
1036 |
+
]
|
lynxkite-lynxscribe/README.md
CHANGED
@@ -15,3 +15,12 @@ Run tests with:
|
|
15 |
```bash
|
16 |
uv run pytest
|
17 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
```bash
|
16 |
uv run pytest
|
17 |
```
|
18 |
+
|
19 |
+
The LLM agent flow examples use local models.
|
20 |
+
|
21 |
+
```bash
|
22 |
+
uv pip install infinity-emb[all]
|
23 |
+
infinity_emb v2 --model-id michaelfeil/bge-small-en-v1.5
|
24 |
+
uv pip install "sglang[all]>=0.4.2.post2" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer/
|
25 |
+
python -m sglang.launch_server --model-path SultanR/SmolTulu-1.7b-Instruct --port 8080
|
26 |
+
```
|
lynxkite-lynxscribe/src/lynxkite_plugins/lynxscribe/__init__.py
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
from . import lynxscribe_ops
|
2 |
from . import llm_ops
|
|
|
|
|
|
|
|
1 |
from . import lynxscribe_ops
|
2 |
from . import llm_ops
|
3 |
+
from .lynxscribe_ops import api_service_post, api_service_get
|
4 |
+
|
5 |
+
__all__ = ["api_service_post", "api_service_get"]
|
lynxkite-lynxscribe/src/lynxkite_plugins/lynxscribe/llm_ops.py
CHANGED
@@ -120,7 +120,7 @@ def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int =
|
|
120 |
options = {}
|
121 |
if accepted_regex:
|
122 |
options["extra_body"] = {
|
123 |
-
"
|
124 |
}
|
125 |
results = chat(
|
126 |
model=model,
|
@@ -212,7 +212,7 @@ def rag(
|
|
212 |
results = [db[int(r)] for r in results["ids"][0]]
|
213 |
return {**input, "rag": results, "_collection": collection}
|
214 |
if engine == RagEngine.Custom:
|
215 |
-
model = "
|
216 |
chat = input[input_field]
|
217 |
embeddings = [embedding(input=[r[db_field]], model=model) for r in db]
|
218 |
q = embedding(input=[chat], model=model)
|
|
|
120 |
options = {}
|
121 |
if accepted_regex:
|
122 |
options["extra_body"] = {
|
123 |
+
"regex": accepted_regex,
|
124 |
}
|
125 |
results = chat(
|
126 |
model=model,
|
|
|
212 |
results = [db[int(r)] for r in results["ids"][0]]
|
213 |
return {**input, "rag": results, "_collection": collection}
|
214 |
if engine == RagEngine.Custom:
|
215 |
+
model = "michaelfeil/bge-small-en-v1.5"
|
216 |
chat = input[input_field]
|
217 |
embeddings = [embedding(input=[r[db_field]], model=model) for r in db]
|
218 |
q = embedding(input=[chat], model=model)
|
lynxkite-lynxscribe/src/lynxkite_plugins/lynxscribe/lynxscribe_ops.py
CHANGED
@@ -160,11 +160,12 @@ async def test_chat_api(message, chat_api, *, show_details=False):
|
|
160 |
model="",
|
161 |
messages=[{"role": "user", "content": message["text"]}],
|
162 |
)
|
163 |
-
response = await chat_api.answer(request)
|
|
|
164 |
if show_details:
|
165 |
-
return {**response.__dict__}
|
166 |
else:
|
167 |
-
return {"answer":
|
168 |
|
169 |
|
170 |
@op("Input chat")
|
@@ -237,22 +238,9 @@ async def get_chat_api(ws):
|
|
237 |
|
238 |
async def stream_chat_api_response(request):
|
239 |
chat_api = await get_chat_api(request["model"])
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
{
|
244 |
-
**response,
|
245 |
-
"id": "asd",
|
246 |
-
"object": "chat.completion.chunk",
|
247 |
-
"model": request["model"],
|
248 |
-
"choices": [
|
249 |
-
{
|
250 |
-
"index": 0,
|
251 |
-
"delta": {"role": "assistant", "content": response["answer"]},
|
252 |
-
}
|
253 |
-
],
|
254 |
-
}
|
255 |
-
)
|
256 |
|
257 |
|
258 |
async def api_service_post(request):
|
|
|
160 |
model="",
|
161 |
messages=[{"role": "user", "content": message["text"]}],
|
162 |
)
|
163 |
+
response = await chat_api.answer(request, stream=False)
|
164 |
+
answer = response.choices[0].message.content
|
165 |
if show_details:
|
166 |
+
return {"answer": answer, **response.__dict__}
|
167 |
else:
|
168 |
+
return {"answer": answer}
|
169 |
|
170 |
|
171 |
@op("Input chat")
|
|
|
238 |
|
239 |
async def stream_chat_api_response(request):
|
240 |
chat_api = await get_chat_api(request["model"])
|
241 |
+
request = ChatCompletionPrompt(**request)
|
242 |
+
async for chunk in await chat_api.answer(request, stream=True):
|
243 |
+
yield chunk.model_dump_json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
|
246 |
async def api_service_post(request):
|
lynxkite-pillow-example/pyproject.toml
CHANGED
@@ -5,6 +5,7 @@ description = "An example LynxKite plugin that wraps some Pillow image processin
|
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.11"
|
7 |
dependencies = [
|
|
|
8 |
"lynxkite-core",
|
9 |
"pillow>=11.1.0",
|
10 |
]
|
|
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.11"
|
7 |
dependencies = [
|
8 |
+
"fsspec>=2025.2.0",
|
9 |
"lynxkite-core",
|
10 |
"pillow>=11.1.0",
|
11 |
]
|
lynxkite-pillow-example/src/lynxkite_plugins/pillow_example/__init__.py
CHANGED
@@ -4,6 +4,7 @@ from lynxkite.core import ops
|
|
4 |
from lynxkite.core.executors import one_by_one
|
5 |
from PIL import Image, ImageFilter
|
6 |
import base64
|
|
|
7 |
import io
|
8 |
|
9 |
ENV = "Pillow"
|
@@ -13,12 +14,15 @@ one_by_one.register(ENV, cache=False)
|
|
13 |
|
14 |
@op("Open image")
|
15 |
def open_image(*, filename: str):
|
16 |
-
|
|
|
|
|
17 |
|
18 |
|
19 |
@op("Save image")
|
20 |
def save_image(image: Image, *, filename: str):
|
21 |
-
|
|
|
22 |
|
23 |
|
24 |
@op("Crop")
|
@@ -59,7 +63,7 @@ def to_grayscale(image: Image):
|
|
59 |
@op("View image", view="image")
|
60 |
def view_image(image: Image):
|
61 |
buffered = io.BytesIO()
|
62 |
-
image.save(buffered, format="
|
63 |
b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
64 |
data_url = "data:image/jpeg;base64," + b64
|
65 |
return data_url
|
|
|
4 |
from lynxkite.core.executors import one_by_one
|
5 |
from PIL import Image, ImageFilter
|
6 |
import base64
|
7 |
+
import fsspec
|
8 |
import io
|
9 |
|
10 |
ENV = "Pillow"
|
|
|
14 |
|
15 |
@op("Open image")
|
16 |
def open_image(*, filename: str):
|
17 |
+
with fsspec.open(filename, "rb") as f:
|
18 |
+
data = io.BytesIO(f.read())
|
19 |
+
return Image.open(data)
|
20 |
|
21 |
|
22 |
@op("Save image")
|
23 |
def save_image(image: Image, *, filename: str):
|
24 |
+
with fsspec.open(filename, "wb") as f:
|
25 |
+
image.save(f)
|
26 |
|
27 |
|
28 |
@op("Crop")
|
|
|
63 |
@op("View image", view="image")
|
64 |
def view_image(image: Image):
|
65 |
buffered = io.BytesIO()
|
66 |
+
image.save(buffered, format="webp")
|
67 |
b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
68 |
data_url = "data:image/jpeg;base64," + b64
|
69 |
return data_url
|
lynxkite-pillow-example/uv.lock
CHANGED
@@ -1,22 +1,33 @@
|
|
1 |
version = 1
|
2 |
requires-python = ">=3.11"
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
[[package]]
|
5 |
name = "lynxkite-core"
|
6 |
version = "0.1.0"
|
7 |
source = { virtual = "../lynxkite-core" }
|
8 |
|
9 |
[[package]]
|
10 |
-
name = "lynxkite-pillow"
|
11 |
version = "0.1.0"
|
12 |
source = { virtual = "." }
|
13 |
dependencies = [
|
|
|
14 |
{ name = "lynxkite-core" },
|
15 |
{ name = "pillow" },
|
16 |
]
|
17 |
|
18 |
[package.metadata]
|
19 |
requires-dist = [
|
|
|
20 |
{ name = "lynxkite-core", virtual = "../lynxkite-core" },
|
21 |
{ name = "pillow", specifier = ">=11.1.0" },
|
22 |
]
|
|
|
1 |
version = 1
|
2 |
requires-python = ">=3.11"
|
3 |
|
4 |
+
[[package]]
|
5 |
+
name = "fsspec"
|
6 |
+
version = "2025.2.0"
|
7 |
+
source = { registry = "https://pypi.org/simple" }
|
8 |
+
sdist = { url = "https://files.pythonhosted.org/packages/b5/79/68612ed99700e6413de42895aa725463e821a6b3be75c87fcce1b4af4c70/fsspec-2025.2.0.tar.gz", hash = "sha256:1c24b16eaa0a1798afa0337aa0db9b256718ab2a89c425371f5628d22c3b6afd", size = 292283 }
|
9 |
+
wheels = [
|
10 |
+
{ url = "https://files.pythonhosted.org/packages/e2/94/758680531a00d06e471ef649e4ec2ed6bf185356a7f9fbfbb7368a40bd49/fsspec-2025.2.0-py3-none-any.whl", hash = "sha256:9de2ad9ce1f85e1931858535bc882543171d197001a0a5eb2ddc04f1781ab95b", size = 184484 },
|
11 |
+
]
|
12 |
+
|
13 |
[[package]]
|
14 |
name = "lynxkite-core"
|
15 |
version = "0.1.0"
|
16 |
source = { virtual = "../lynxkite-core" }
|
17 |
|
18 |
[[package]]
|
19 |
+
name = "lynxkite-pillow-example"
|
20 |
version = "0.1.0"
|
21 |
source = { virtual = "." }
|
22 |
dependencies = [
|
23 |
+
{ name = "fsspec" },
|
24 |
{ name = "lynxkite-core" },
|
25 |
{ name = "pillow" },
|
26 |
]
|
27 |
|
28 |
[package.metadata]
|
29 |
requires-dist = [
|
30 |
+
{ name = "fsspec", specifier = ">=2025.2.0" },
|
31 |
{ name = "lynxkite-core", virtual = "../lynxkite-core" },
|
32 |
{ name = "pillow", specifier = ">=11.1.0" },
|
33 |
]
|