darabos commited on
Commit
2d3da64
·
1 Parent(s): 121923b

Redo PyTorch boxes as a separate environment.

Browse files
server/ops.py CHANGED
@@ -181,3 +181,8 @@ def op_registration(env: str):
181
 
182
  def passive_op_registration(env: str):
183
  return functools.partial(register_passive_op, env)
 
 
 
 
 
 
181
 
182
  def passive_op_registration(env: str):
183
  return functools.partial(register_passive_op, env)
184
+
185
+ def register_area(env, name, params=[]):
186
+ '''A node that represents an area. It can contain other nodes, but does not restrict movement in any way.'''
187
+ op = Op(func=no_op, name=name, params={p.name: p for p in params}, inputs={}, outputs={}, type='area')
188
+ CATALOGS[env][name] = op
server/pytorch_model_ops.py CHANGED
@@ -1,72 +1,35 @@
1
- '''Boxes for defining and using PyTorch models.'''
2
- from enum import Enum
3
- import inspect
4
  from . import ops
5
-
6
- LAYERS = {}
7
-
8
- op = ops.op_registration('LynxKite')
9
-
10
- @op("Define PyTorch model", sub_nodes=LAYERS)
11
- def define_pytorch_model(*, sub_flow):
12
- print('sub_flow:', sub_flow)
13
- return ops.Bundle(other={'model': str(sub_flow)})
14
-
15
- @op("Train PyTorch model")
16
- def train_pytorch_model(model, graph):
17
- # import torch # Lazy import because it's slow.
18
- return 'hello ' + str(model)
19
-
20
- def register_layer(name):
21
- def decorator(func):
22
- sig = inspect.signature(func)
23
- inputs = {
24
- name: ops.Input(name=name, type=param.annotation, position='bottom')
25
- for name, param in sig.parameters.items()
26
- if param.kind != param.KEYWORD_ONLY}
27
- params = {
28
- name: ops.Parameter.basic(name, param.default, param.annotation)
29
- for name, param in sig.parameters.items()
30
- if param.kind == param.KEYWORD_ONLY}
31
- outputs = {'x': ops.Output(name='x', type='tensor', position='top')}
32
- LAYERS[name] = ops.Op(func=func, name=name, params=params, inputs=inputs, outputs=outputs)
33
- return func
34
- return decorator
35
-
36
- @register_layer('LayerNorm')
37
- def layernorm(x):
38
- return 'LayerNorm'
39
-
40
- @register_layer('Dropout')
41
- def dropout(x, *, p=0.5):
42
- return f'Dropout ({p})'
43
-
44
- @register_layer('Linear')
45
- def linear(*, output_dim: int):
46
- return f'Linear {output_dim}'
47
-
48
- class GraphConv(Enum):
49
- GCNConv = 'GCNConv'
50
- GATConv = 'GATConv'
51
- GATv2Conv = 'GATv2Conv'
52
- SAGEConv = 'SAGEConv'
53
-
54
- @register_layer('Graph Convolution')
55
- def graph_convolution(x, edges, *, type: GraphConv):
56
- return 'GraphConv'
57
-
58
- class Nonlinearity(Enum):
59
- Mish = 'Mish'
60
- ReLU = 'ReLU'
61
- Tanh = 'Tanh'
62
-
63
- @register_layer('Nonlinearity')
64
- def nonlinearity(x, *, type: Nonlinearity):
65
- return 'ReLU'
66
-
67
- def register_area(name, params=[]):
68
- '''A node that represents an area. It can contain other nodes, but does not restrict movement in any way.'''
69
- op = ops.Op(func=ops.no_op, name=name, params={p.name: p for p in params}, inputs={}, outputs={}, type='area')
70
- LAYERS[name] = op
71
-
72
- register_area('Repeat', params=[ops.Parameter.basic('times', 1, int)])
 
1
+ '''Boxes for defining PyTorch models.'''
 
 
2
  from . import ops
3
+ from .ops import Parameter as P
4
+
5
+ ENV = 'PyTorch model'
6
+ def reg(name, inputs=[], outputs=None, params=[]):
7
+ if outputs is None:
8
+ outputs = inputs
9
+ return ops.register_passive_op(
10
+ ENV, name,
11
+ inputs=[ops.Input(name=name, position='bottom', type='tensor') for name in inputs],
12
+ outputs=[ops.Output(name=name, position='top', type='tensor') for name in outputs],
13
+ params=params)
14
+ reg('Input: features', outputs=['x'])
15
+ reg('Input: graph edges', outputs=['edges'])
16
+ reg('Input: label', outputs=['y'])
17
+ reg('Input: positive sample', outputs=['x_pos'])
18
+ reg('Input: negative sample', outputs=['x_neg'])
19
+
20
+ reg('Attention', inputs=['q', 'k', 'v'], outputs=['x'])
21
+ reg('LayerNorm', inputs=['x'])
22
+ reg('Dropout', inputs=['x'], params=[P.basic('p', 0.5)])
23
+ reg('Linear', inputs=['x'], params=[P.basic('output_dim', 'same')])
24
+ reg('Graph conv', inputs=['x', 'edges'], outputs=['x'],
25
+ params=[P.options('type', ['GCNConv', 'GATConv', 'GATv2Conv', 'SAGEConv'])])
26
+ reg('Activation', inputs=['x'],
27
+ params=[P.options('type', ['ReLU', 'LeakyReLU', 'Tanh', 'Mish'])])
28
+ reg('Supervised loss', inputs=['x', 'y'], outputs=['loss'])
29
+ reg('Triplet loss', inputs=['x', 'x_pos', 'x_neg'], outputs=['loss'])
30
+ reg('Optimizer', inputs=['loss'], outputs=[],
31
+ params=[
32
+ P.options('type', ['AdamW', 'Adafactor', 'Adagrad', 'SGD', 'Lion', 'Paged AdamW', 'Galore AdamW']),
33
+ P.basic('lr', 0.001)])
34
+
35
+ ops.register_area(ENV, 'Repeat', params=[ops.Parameter.basic('times', 1, int)])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
web/src/NodeWithArea.svelte CHANGED
@@ -45,10 +45,6 @@
45
  .area {
46
  border-radius: 10px;
47
  border: 3px dashed oklch(75% 0.2 55);
48
- min-width: 400px;
49
- min-height: 400px;
50
- max-width: 800px;
51
- max-height: 800px;
52
  z-index: 0 !important;
53
  }
54
  .title {
 
45
  .area {
46
  border-radius: 10px;
47
  border: 3px dashed oklch(75% 0.2 55);
 
 
 
 
48
  z-index: 0 !important;
49
  }
50
  .title {