Spaces:
Running
Running
"""Boxes for defining PyTorch models.""" | |
from lynxkite.core import ops, workspace | |
from lynxkite.core.ops import Parameter as P | |
import torch | |
import torch_geometric as pyg | |
ENV = "PyTorch model" | |
def reg(name, inputs=[], outputs=None, params=[]): | |
if outputs is None: | |
outputs = inputs | |
return ops.register_passive_op( | |
ENV, | |
name, | |
inputs=[ | |
ops.Input(name=name, position="bottom", type="tensor") for name in inputs | |
], | |
outputs=[ | |
ops.Output(name=name, position="top", type="tensor") for name in outputs | |
], | |
params=params, | |
) | |
reg("Input: embedding", outputs=["x"]) | |
reg("Input: graph edges", outputs=["edges"]) | |
reg("Input: label", outputs=["y"]) | |
reg("Input: positive sample", outputs=["x_pos"]) | |
reg("Input: negative sample", outputs=["x_neg"]) | |
reg("Input: sequential", outputs=["y"]) | |
reg("Input: zeros", outputs=["x"]) | |
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"]) | |
reg( | |
"Neural ODE", | |
inputs=["x"], | |
params=[ | |
P.basic("relative_tolerance"), | |
P.basic("absolute_tolerance"), | |
P.options( | |
"method", | |
[ | |
"dopri8", | |
"dopri5", | |
"bosh3", | |
"fehlberg2", | |
"adaptive_heun", | |
"euler", | |
"midpoint", | |
"rk4", | |
"explicit_adams", | |
"implicit_adams", | |
], | |
), | |
], | |
) | |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"]) | |
reg("LayerNorm", inputs=["x"]) | |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)]) | |
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")]) | |
reg("Softmax", inputs=["x"]) | |
reg( | |
"Graph conv", | |
inputs=["x", "edges"], | |
outputs=["x"], | |
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])], | |
) | |
reg( | |
"Activation", | |
inputs=["x"], | |
params=[P.options("type", ["ReLU", "LeakyReLU", "Tanh", "Mish"])], | |
) | |
reg("Concatenate", inputs=["a", "b"], outputs=["x"]) | |
reg("Add", inputs=["a", "b"], outputs=["x"]) | |
reg("Subtract", inputs=["a", "b"], outputs=["x"]) | |
reg("Multiply", inputs=["a", "b"], outputs=["x"]) | |
reg("MSE loss", inputs=["x", "y"], outputs=["loss"]) | |
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"]) | |
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"]) | |
reg( | |
"Optimizer", | |
inputs=["loss"], | |
outputs=[], | |
params=[ | |
P.options( | |
"type", | |
[ | |
"AdamW", | |
"Adafactor", | |
"Adagrad", | |
"SGD", | |
"Lion", | |
"Paged AdamW", | |
"Galore AdamW", | |
], | |
), | |
P.basic("lr", 0.001), | |
], | |
) | |
ops.register_passive_op( | |
ENV, | |
"Repeat", | |
inputs=[ops.Input(name="input", position="top", type="tensor")], | |
outputs=[ops.Output(name="output", position="bottom", type="tensor")], | |
params=[ops.Parameter.basic("times", 1, int)], | |
) | |
ops.register_passive_op( | |
ENV, | |
"Recurrent chain", | |
inputs=[ops.Input(name="input", position="top", type="tensor")], | |
outputs=[ops.Output(name="output", position="bottom", type="tensor")], | |
params=[], | |
) | |
def build_model(ws: workspace.Workspace, inputs: dict): | |
"""Builds the model described in the workspace.""" | |
optimizers = [] | |
for node in ws.nodes: | |
if node.op.name == "Optimizer": | |
optimizers.append(node) | |
assert optimizers, "No optimizer found." | |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}" | |
[optimizer] = optimizers | |
inputs = {n.id: [] for n in ws.nodes} | |
for e in ws.edges: | |
inputs[e.target].append(e.source) | |
layers = [] | |
# TODO: Create layers based on the workspace. | |
sizes = {} | |
for k, v in inputs.items(): | |
sizes[k] = v.size | |
layers.append((pyg.nn.Linear(sizes["x"], 1024), "x -> x")) | |
layers.append((torch.nn.LayerNorm(1024), "x -> x")) | |
m = pyg.nn.Sequential("x, edge_index", layers) | |
return m | |