Spaces:
Running
Running
'''An example of passive ops. Just using LynxKite to describe the configuration of a complex system.''' | |
from .ops import register_passive_op as reg, Parameter as P | |
reg('Scrape documents', inputs={}, params=[P('url', '')]) | |
reg('Conversation logs', inputs={}) | |
reg('Extract graph') | |
reg('Compute embeddings', params=[P.options('method', ['OpenAI', 'graph', 'Yi-34b']), P('dimensions', 1234)]) | |
reg('Vector DB', inputs={'multi': '*'}, params=[P.options('backend', ['FAISS', 'ANN', 'HNSW'])]) | |
reg('Chat UI', outputs={}) | |
reg('Chat backend', inputs={}) | |
reg('WhatsApp', inputs={}) | |
reg('PII removal') | |
reg('Intent classification') | |
reg('System prompt', inputs={}, params=[P('prompt', 'You are a helpful chatbot.')]) | |
reg('LLM', inputs={'multi': '*'}, params=[P.options('backend', ['GPT-4', 'Yi-34b', 'Claude 3 Opus', 'Google Gemini'])]) | |
# From Marton's mock-up. | |
yi = 'Yi-34B (triton)' | |
reg('Chat Input', inputs={}, params=[ | |
P.options('load_mode', ['augmented']), | |
P.options('model', [yi]), | |
P.options('embedder', ['GritLM-7b (triton)']), | |
]) | |
reg('k-NN Intent Classifier', inputs={'qa_embs': None, 'rag_graph': None}, params=[ | |
P.options('distance', ['cosine', 'euclidean']), | |
P('max_dist', 0.3), | |
P('k', 3), | |
P.options('voting', ['most common', 'weighted']), | |
]) | |
reg('Chroma Graph RAG Loader', inputs={}, params=[ | |
P.options('location', ['GCP']), | |
P.collapsed('bucket', ''), | |
P.collapsed('folder', ''), | |
P.options('embedder', ['GritLM-7b (triton)']), | |
]) | |
reg('Scenario Builder', params=[ | |
P.collapsed('scenario', ''), | |
]) | |
reg('Graph RAG Answer', inputs={'qa_embs': None, 'intent': None, 'rag_graph': None, 'prompt_dict': None}, params=[ | |
P.options('answer_llm', [yi]), | |
P('faq_dist', 0.12), | |
P('max_dist', 0.25), | |
P('ctx_tokens', 2800), | |
P.options('distance', ['cosine', 'euclidean']), | |
P.collapsed('graph_rag_params', ''), | |
]) | |
reg('Answer Post Processing', inputs={'qa_embs': None, 'rag_graph': None}, params=[ | |
P.options('distance', ['cosine', 'euclidean']), | |
P('min_conf', 0.78), | |
]) | |
reg('Chat Output', outputs={}) | |