darabos's picture
Plugin loading.
83b1026
raw
history blame
7.06 kB
"""For specifying an LLM agent logic flow.
This is very much a prototype. It might end up merged into LynxScribe
as an "agentic logic flow". It might just get deleted.
(This is why the dependencies are left hanging.)
"""
from lynxkite.core import ops
import enum
import jinja2
import json
import numpy as np
import pandas as pd
from lynxkite.core.executors import one_by_one
jinja = jinja2.Environment()
chroma_client = None
LLM_CACHE = {}
ENV = "LLM logic"
one_by_one.register(ENV)
op = ops.op_registration(ENV)
def chat(*args, **kwargs):
import openai
chat_client = openai.OpenAI(base_url="http://localhost:8080/v1")
key = json.dumps({"method": "chat", "args": args, "kwargs": kwargs})
if key not in LLM_CACHE:
completion = chat_client.chat.completions.create(*args, **kwargs)
LLM_CACHE[key] = [c.message.content for c in completion.choices]
return LLM_CACHE[key]
def embedding(*args, **kwargs):
import openai
embedding_client = openai.OpenAI(base_url="http://localhost:7997/")
key = json.dumps({"method": "embedding", "args": args, "kwargs": kwargs})
if key not in LLM_CACHE:
res = embedding_client.embeddings.create(*args, **kwargs)
[data] = res.data
LLM_CACHE[key] = data.embedding
return LLM_CACHE[key]
@op("Input CSV")
def input_csv(*, filename: ops.PathStr, key: str):
return pd.read_csv(filename).rename(columns={key: "text"})
@op("Input document")
def input_document(*, filename: ops.PathStr):
with open(filename) as f:
return {"text": f.read()}
@op("Input chat")
def input_chat(*, chat: str):
return {"text": chat}
@op("Split document")
def split_document(input, *, delimiter: str = "\\n\\n"):
delimiter = delimiter.encode().decode("unicode_escape")
chunks = input["text"].split(delimiter)
return pd.DataFrame(chunks, columns=["text"])
@ops.input_position(input="top")
@op("Build document graph")
def build_document_graph(input):
return [{"source": i, "target": i + 1} for i in range(len(input) - 1)]
@ops.input_position(nodes="top", edges="top")
@op("Predict links")
def predict_links(nodes, edges):
"""A placeholder for a real algorithm. For now just adds 2-hop neighbors."""
edge_map = {} # Source -> [Targets]
for edge in edges:
edge_map.setdefault(edge["source"], [])
edge_map[edge["source"]].append(edge["target"])
new_edges = []
for edge in edges:
for t in edge_map.get(edge["target"], []):
new_edges.append({"source": edge["source"], "target": t})
return edges + new_edges
@ops.input_position(nodes="top", edges="top")
@op("Add neighbors")
def add_neighbors(nodes, edges, item):
nodes = pd.DataFrame(nodes)
edges = pd.DataFrame(edges)
matches = item["rag"]
additional_matches = []
for m in matches:
node = nodes[nodes["text"] == m].index[0]
neighbors = edges[edges["source"] == node]["target"].to_list()
additional_matches.extend(nodes.loc[neighbors, "text"])
return {**item, "rag": matches + additional_matches}
@op("Create prompt")
def create_prompt(input, *, save_as="prompt", template: ops.LongStr):
assert template, (
"Please specify the template. Refer to columns using the Jinja2 syntax."
)
t = jinja.from_string(template)
prompt = t.render(**input)
return {**input, save_as: prompt}
@op("Ask LLM")
def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int = 100):
assert model, "Please specify the model."
assert "prompt" in input, "Please create the prompt first."
options = {}
if accepted_regex:
options["extra_body"] = {
"guided_regex": accepted_regex,
}
results = chat(
model=model,
max_tokens=max_tokens,
messages=[
{"role": "user", "content": input["prompt"]},
],
**options,
)
return [{**input, "response": r} for r in results]
@op("View", view="table_view")
def view(input, *, _ctx: one_by_one.Context):
v = _ctx.last_result
if v:
columns = v["dataframes"]["df"]["columns"]
v["dataframes"]["df"]["data"].append([input[c] for c in columns])
else:
columns = [str(c) for c in input.keys() if not str(c).startswith("_")]
v = {
"dataframes": {
"df": {
"columns": columns,
"data": [[input[c] for c in columns]],
}
}
}
return v
@ops.input_position(input="right")
@ops.output_position(output="left")
@op("Loop")
def loop(input, *, max_iterations: int = 3, _ctx: one_by_one.Context):
"""Data can flow back here max_iterations-1 times."""
key = f"iterations-{_ctx.node.id}"
input[key] = input.get(key, 0) + 1
if input[key] < max_iterations:
return input
@op("Branch", outputs=["true", "false"])
def branch(input, *, expression: str):
res = eval(expression, input)
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input)
class RagEngine(enum.Enum):
Chroma = "Chroma"
Custom = "Custom"
@ops.input_position(db="top")
@op("RAG")
def rag(
input,
db,
*,
engine: RagEngine = RagEngine.Chroma,
input_field="text",
db_field="text",
num_matches: int = 10,
_ctx: one_by_one.Context,
):
global chroma_client
if engine == RagEngine.Chroma:
last = _ctx.last_result
if last:
collection = last["_collection"]
else:
collection_name = _ctx.node.id.replace(" ", "_")
if chroma_client is None:
import chromadb
chroma_client = chromadb.Client()
for c in chroma_client.list_collections():
if c.name == collection_name:
chroma_client.delete_collection(name=collection_name)
collection = chroma_client.create_collection(name=collection_name)
collection.add(
documents=[r[db_field] for r in db],
ids=[str(i) for i in range(len(db))],
)
results = collection.query(
query_texts=[input[input_field]],
n_results=num_matches,
)
results = [db[int(r)] for r in results["ids"][0]]
return {**input, "rag": results, "_collection": collection}
if engine == RagEngine.Custom:
model = "google/gemma-2-2b-it"
chat = input[input_field]
embeddings = [embedding(input=[r[db_field]], model=model) for r in db]
q = embedding(input=[chat], model=model)
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
scores = [(i, cosine_similarity(q, e)) for i, e in enumerate(embeddings)]
scores.sort(key=lambda x: -x[1])
matches = [db[i][db_field] for i, _ in scores[:num_matches]]
return {**input, "rag": matches}
@op("Run Python")
def run_python(input, *, template: str):
"""TODO: Implement."""
return input