Spaces:
Sleeping
Sleeping
'''For specifying an LLM agent logic flow.''' | |
from . import ops | |
import chromadb | |
import fastapi.encoders | |
import inspect | |
import jinja2 | |
import json | |
import openai | |
import pandas as pd | |
import traceback | |
import typing | |
from . import workspace | |
client = openai.OpenAI(base_url="http://localhost:11434/v1") | |
jinja = jinja2.Environment() | |
chroma_client = chromadb.Client() | |
LLM_CACHE = {} | |
ENV = 'LLM logic' | |
op = ops.op_registration(ENV) | |
class Context(ops.BaseConfig): | |
'''Passed to operation functions as "_ctx" if they have such a parameter.''' | |
node: workspace.WorkspaceNode | |
last_result: typing.Any = None | |
class Output(ops.BaseConfig): | |
'''Return this to send values to specific outputs of a node.''' | |
output_handle: str | |
value: dict | |
def chat(*args, **kwargs): | |
key = json.dumps({'args': args, 'kwargs': kwargs}) | |
if key not in LLM_CACHE: | |
completion = client.chat.completions.create(*args, **kwargs) | |
LLM_CACHE[key] = [c.message.content for c in completion.choices] | |
return LLM_CACHE[key] | |
def input(*, filename: ops.PathStr, key: str): | |
return pd.read_csv(filename).rename(columns={key: 'text'}) | |
def create_prompt(input, *, save_as='prompt', template: ops.LongStr): | |
assert template, 'Please specify the template. Refer to columns using the Jinja2 syntax.' | |
t = jinja.from_string(template) | |
prompt = t.render(**input) | |
return {**input, save_as: prompt} | |
def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int = 100): | |
assert model, 'Please specify the model.' | |
assert 'prompt' in input, 'Please create the prompt first.' | |
options = {} | |
if accepted_regex: | |
options['extra_body'] = { | |
"guided_regex": accepted_regex, | |
} | |
results = chat( | |
model=model, | |
max_tokens=max_tokens, | |
messages=[ | |
{"role": "user", "content": input['prompt']}, | |
], | |
**options, | |
) | |
return [{**input, 'response': r} for r in results] | |
def view(input, *, _ctx: Context): | |
v = _ctx.last_result | |
if v: | |
columns = v['dataframes']['df']['columns'] | |
v['dataframes']['df']['data'].append([input[c] for c in columns]) | |
else: | |
columns = [str(c) for c in input.keys() if not str(c).startswith('_')] | |
v = { | |
'dataframes': { 'df': { | |
'columns': columns, | |
'data': [[input[c] for c in columns]], | |
}} | |
} | |
return v | |
def loop(input, *, max_iterations: int = 3, _ctx: Context): | |
'''Data can flow back here max_iterations-1 times.''' | |
key = f'iterations-{_ctx.node.id}' | |
input[key] = input.get(key, 0) + 1 | |
if input[key] < max_iterations: | |
return input | |
def branch(input, *, expression: str): | |
res = eval(expression, input) | |
return Output(output_handle=str(bool(res)).lower(), value=input) | |
def rag(input, db, *, input_field='text', db_field='text', num_matches: int=10, _ctx: Context): | |
last = _ctx.last_result | |
if last: | |
collection = last['_collection'] | |
else: | |
collection_name = _ctx.node.id.replace(' ', '_') | |
for c in chroma_client.list_collections(): | |
if c.name == collection_name: | |
chroma_client.delete_collection(name=collection_name) | |
collection = chroma_client.create_collection(name=collection_name) | |
collection.add( | |
documents=[r[db_field] for r in db], | |
ids=[str(i) for i in range(len(db))], | |
) | |
results = collection.query( | |
query_texts=[input[input_field]], | |
n_results=num_matches, | |
) | |
results = [db[int(r)] for r in results['ids'][0]] | |
return {**input, 'rag': results, '_collection': collection} | |
def run_python(input, *, template: str): | |
assert template, 'Please specify the template. Refer to columns using their names in uppercase.' | |
p = template | |
for k, v in input.items(): | |
p = p.replace(k.upper(), str(v)) | |
return p | |
EXECUTOR_OUTPUT_CACHE = {} | |
def execute(ws): | |
catalog = ops.CATALOGS[ENV] | |
nodes = {n.id: n for n in ws.nodes} | |
contexts = {n.id: Context(node=n) for n in ws.nodes} | |
edges = {n.id: [] for n in ws.nodes} | |
for e in ws.edges: | |
edges[e.source].append(e) | |
tasks = {} | |
NO_INPUT = object() # Marker for initial tasks. | |
for node in ws.nodes: | |
node.data.error = None | |
op = catalog[node.data.title] | |
# Start tasks for nodes that have no inputs. | |
if not op.inputs: | |
tasks[node.id] = [NO_INPUT] | |
batch_inputs = {} | |
# Run the rest until we run out of tasks. | |
for stage in get_stages(ws): | |
next_stage = {} | |
while tasks: | |
n, ts = tasks.popitem() | |
if n not in stage: | |
next_stage.setdefault(n, []).extend(ts) | |
continue | |
node = nodes[n] | |
data = node.data | |
op = catalog[data.title] | |
params = {**data.params} | |
if has_ctx(op): | |
params['_ctx'] = contexts[node.id] | |
results = [] | |
for task in ts: | |
try: | |
inputs = [ | |
batch_inputs[(n, i.name)] if i.position == 'top' else task | |
for i in op.inputs.values()] | |
key = json.dumps(fastapi.encoders.jsonable_encoder((inputs, params))) | |
if key not in EXECUTOR_OUTPUT_CACHE: | |
EXECUTOR_OUTPUT_CACHE[key] = op.func(*inputs, **params) | |
result = EXECUTOR_OUTPUT_CACHE[key] | |
except Exception as e: | |
traceback.print_exc() | |
data.error = str(e) | |
break | |
contexts[node.id].last_result = result | |
# Returned lists and DataFrames are considered multiple tasks. | |
if isinstance(result, pd.DataFrame): | |
result = df_to_list(result) | |
elif not isinstance(result, list): | |
result = [result] | |
results.extend(result) | |
else: # Finished all tasks without errors. | |
if op.type == 'visualization' or op.type == 'table_view': | |
data.display = results[0] | |
for edge in edges[node.id]: | |
t = nodes[edge.target] | |
op = catalog[t.data.title] | |
i = op.inputs[edge.targetHandle] | |
if i.position == 'top': | |
batch_inputs.setdefault((edge.target, edge.targetHandle), []).extend(results) | |
else: | |
tasks.setdefault(edge.target, []).extend(results) | |
tasks = next_stage | |
def df_to_list(df): | |
return [dict(zip(df.columns, row)) for row in df.values] | |
def has_ctx(op): | |
sig = inspect.signature(op.func) | |
return '_ctx' in sig.parameters | |
def get_stages(ws): | |
'''Inputs on top are batch inputs. We decompose the graph into a DAG of components along these edges.''' | |
catalog = ops.CATALOGS[ENV] | |
nodes = {n.id: n for n in ws.nodes} | |
batch_inputs = {} | |
inputs = {} | |
for edge in ws.edges: | |
inputs.setdefault(edge.target, []).append(edge.source) | |
node = nodes[edge.target] | |
op = catalog[node.data.title] | |
i = op.inputs[edge.targetHandle] | |
if i.position == 'top': | |
batch_inputs.setdefault(edge.target, []).append(edge.source) | |
stages = [] | |
for bt, bss in batch_inputs.items(): | |
upstream = set(bss) | |
new = set(bss) | |
while new: | |
n = new.pop() | |
for i in inputs.get(n, []): | |
if i not in upstream: | |
upstream.add(i) | |
new.add(i) | |
stages.append(upstream) | |
stages.sort(key=lambda s: len(s)) | |
stages.append(set(nodes)) | |
return stages | |