lynxkite / server /ops.py
darabos's picture
Boxes for Marton's chatbot flow. Visual tweaks.
52ec402
raw
history blame
6.23 kB
'''API for implementing LynxKite operations.'''
import dataclasses
import enum
import functools
import inspect
import networkx as nx
import pandas as pd
import typing
ALL_OPS = {}
PARAM_TYPE = type[typing.Any]
typeof = type # We have some arguments called "type".
@dataclasses.dataclass
class Parameter:
'''Defines a parameter for an operation.'''
name: str
default: any
type: PARAM_TYPE = None
@staticmethod
def options(name, options, default=None):
e = enum.Enum(f'OptionsFor_{name}', options)
return Parameter(name, e[default or options[0]], e)
@staticmethod
def collapsed(name, default, type=None):
return Parameter(name, default, ('collapsed', type or typeof(default)))
def __post_init__(self):
if self.default is inspect._empty:
self.default = None
if self.type is None or self.type is inspect._empty:
self.type = type(self.default)
def to_json(self):
t = str(self.type)
default = self.default
if isinstance(self.type, type) and issubclass(self.type, enum.Enum):
t = {'enum': list(self.type.__members__.keys())}
default = self.default.name if self.default else t['enum'][0]
if isinstance(self.type, tuple) and self.type[0] == 'collapsed':
t = {'collapsed': str(self.type[1])}
return {
'name': self.name,
'default': default,
'type': t,
}
@dataclasses.dataclass
class Op:
func: callable
name: str
params: dict[str, Parameter]
inputs: dict # name -> type
outputs: dict # name -> type
type: str # The UI to use for this operation.
sub_nodes: list = None # If set, these nodes can be placed inside the operation's node.
def __call__(self, *inputs, **params):
# Convert parameters.
for p in params:
if p in self.params:
if self.params[p].type == int:
params[p] = int(params[p])
elif self.params[p].type == float:
params[p] = float(params[p])
# Convert inputs.
inputs = list(inputs)
for i, (x, t) in enumerate(zip(inputs, self.inputs.values())):
if t == nx.Graph and isinstance(x, Bundle):
inputs[i] = x.to_nx()
elif t == Bundle and isinstance(x, nx.Graph):
inputs[i] = Bundle.from_nx(x)
res = self.func(*inputs, **params)
return res
def to_json(self):
return {
'type': self.type,
'data': {
'title': self.name,
'inputs': {i: str(type) for i, type in self.inputs.items()},
'outputs': {o: str(type) for o, type in self.outputs.items()},
'params': [p.to_json() for p in self.params.values()],
},
'sub_nodes': [sub.to_json() for sub in self.sub_nodes.values()] if self.sub_nodes else None,
}
@dataclasses.dataclass
class RelationDefinition:
'''Defines a set of edges.'''
df: str # The DataFrame that contains the edges.
source_column: str # The column in the edge DataFrame that contains the source node ID.
target_column: str # The column in the edge DataFrame that contains the target node ID.
source_table: str # The DataFrame that contains the source nodes.
target_table: str # The DataFrame that contains the target nodes.
source_key: str # The column in the source table that contains the node ID.
target_key: str # The column in the target table that contains the node ID.
@dataclasses.dataclass
class Bundle:
'''A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
It can also carry other data, such as a trained model.
'''
dfs: dict = dataclasses.field(default_factory=dict) # name -> DataFrame
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict = None
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes['id'] = nodes.index
return cls(
dfs={'edges': edges, 'nodes': nodes},
relations=[
RelationDefinition(
df='edges',
source_column='source',
target_column='target',
source_table='nodes',
target_table='nodes',
source_key='id',
target_key='id',
)
]
)
def to_nx(self):
graph = nx.from_pandas_edgelist(self.dfs['edges'])
nx.set_node_attributes(graph, self.dfs['nodes'].set_index('id').to_dict('index'))
return graph
def nx_node_attribute_func(name):
'''Decorator for wrapping a function that adds a NetworkX node attribute.'''
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def op(name, *, view='basic', sub_nodes=None):
'''Decorator for defining an operation.'''
def decorator(func):
sig = inspect.signature(func)
# Positional arguments are inputs.
inputs = {
name: param.annotation
for name, param in sig.parameters.items()
if param.kind != param.KEYWORD_ONLY}
params = {}
for n, param in sig.parameters.items():
if param.kind == param.KEYWORD_ONLY:
params[n] = Parameter(n, param.default, param.annotation)
outputs = {'output': 'yes'} if view == 'basic' else {} # Maybe more fancy later.
op = Op(func, name, params=params, inputs=inputs, outputs=outputs, type=view)
if sub_nodes is not None:
op.sub_nodes = sub_nodes
op.type = 'sub_flow'
ALL_OPS[name] = op
return func
return decorator
def no_op(*args, **kwargs):
if args:
return args[0]
return Bundle()
def register_passive_op(name, inputs={'input': Bundle}, outputs={'output': Bundle}, params=[]):
'''A passive operation has no associated code.'''
op = Op(no_op, name, params={p.name: p for p in params}, inputs=inputs, outputs=outputs, type='basic')
ALL_OPS[name] = op
return op
def register_area(name, params=[]):
'''A node that represents an area. It can contain other nodes, but does not restrict movement in any way.'''
op = register_passive_op(name, params=params, inputs={}, outputs={})
op.type = 'area'