Spaces:
Running
Running
'''Some operations. To be split into separate files when we have more.''' | |
from . import ops | |
from collections import deque | |
import dataclasses | |
import functools | |
import matplotlib | |
import networkx as nx | |
import pandas as pd | |
import traceback | |
import typing | |
op = ops.op_registration('LynxKite') | |
class RelationDefinition: | |
'''Defines a set of edges.''' | |
df: str # The DataFrame that contains the edges. | |
source_column: str # The column in the edge DataFrame that contains the source node ID. | |
target_column: str # The column in the edge DataFrame that contains the target node ID. | |
source_table: str # The DataFrame that contains the source nodes. | |
target_table: str # The DataFrame that contains the target nodes. | |
source_key: str # The column in the source table that contains the node ID. | |
target_key: str # The column in the target table that contains the node ID. | |
class Bundle: | |
'''A collection of DataFrames and other data. | |
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data. | |
It can also carry other data, such as a trained model. | |
''' | |
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict) | |
relations: list[RelationDefinition] = dataclasses.field(default_factory=list) | |
other: dict[str, typing.Any] = None | |
def from_nx(cls, graph: nx.Graph): | |
edges = nx.to_pandas_edgelist(graph) | |
d = dict(graph.nodes(data=True)) | |
nodes = pd.DataFrame(d.values(), index=d.keys()) | |
nodes['id'] = nodes.index | |
return cls( | |
dfs={'edges': edges, 'nodes': nodes}, | |
relations=[ | |
RelationDefinition( | |
df='edges', | |
source_column='source', | |
target_column='target', | |
source_table='nodes', | |
target_table='nodes', | |
source_key='id', | |
target_key='id', | |
) | |
] | |
) | |
def to_nx(self): | |
graph = nx.from_pandas_edgelist(self.dfs['edges']) | |
nx.set_node_attributes(graph, self.dfs['nodes'].set_index('id').to_dict('index')) | |
return graph | |
def nx_node_attribute_func(name): | |
'''Decorator for wrapping a function that adds a NetworkX node attribute.''' | |
def decorator(func): | |
def wrapper(graph: nx.Graph, **kwargs): | |
graph = graph.copy() | |
attr = func(graph, **kwargs) | |
nx.set_node_attributes(graph, attr, name) | |
return graph | |
return wrapper | |
return decorator | |
def disambiguate_edges(ws): | |
'''If an input plug is connected to multiple edges, keep only the last edge.''' | |
seen = set() | |
for edge in reversed(ws.edges): | |
if (edge.target, edge.targetHandle) in seen: | |
ws.edges.remove(edge) | |
seen.add((edge.target, edge.targetHandle)) | |
async def execute(ws): | |
catalog = ops.CATALOGS['LynxKite'] | |
# Nodes are responsible for interpreting/executing their child nodes. | |
nodes = [n for n in ws.nodes if not n.parentId] | |
disambiguate_edges(ws) | |
children = {} | |
for n in ws.nodes: | |
if n.parentId: | |
children.setdefault(n.parentId, []).append(n) | |
outputs = {} | |
failed = 0 | |
while len(outputs) + failed < len(nodes): | |
for node in nodes: | |
if node.id in outputs: | |
continue | |
# TODO: Take the input/output handles into account. | |
inputs = [edge.source for edge in ws.edges if edge.target == node.id] | |
if all(input in outputs for input in inputs): | |
inputs = [outputs[input] for input in inputs] | |
data = node.data | |
op = catalog[data.title] | |
params = {**data.params} | |
# Convert inputs. | |
for i, (x, p) in enumerate(zip(inputs, op.inputs.values())): | |
if p.type == nx.Graph and isinstance(x, Bundle): | |
inputs[i] = x.to_nx() | |
elif p.type == Bundle and isinstance(x, nx.Graph): | |
inputs[i] = Bundle.from_nx(x) | |
try: | |
output = op(*inputs, **params) | |
except Exception as e: | |
traceback.print_exc() | |
data.error = str(e) | |
failed += 1 | |
continue | |
if len(op.inputs) == 1 and op.inputs.get('multi') == '*': | |
# It's a flexible input. Create n+1 handles. | |
data.inputs = {f'input{i}': None for i in range(len(inputs) + 1)} | |
data.error = None | |
outputs[node.id] = output | |
if op.type == 'visualization' or op.type == 'table_view' or op.type == 'image': | |
data.display = output | |
def import_parquet(*, filename: str): | |
'''Imports a parquet file.''' | |
return pd.read_parquet(filename) | |
def create_scale_free_graph(*, nodes: int = 10): | |
'''Creates a scale-free graph with the given number of nodes.''' | |
return nx.scale_free_graph(nodes) | |
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100): | |
return nx.pagerank(graph, alpha=damping, max_iter=iterations) | |
def discard_loop_edges(graph: nx.Graph): | |
graph = graph.copy() | |
graph.remove_edges_from(nx.selfloop_edges(graph)) | |
return graph | |
def sample_graph(graph: nx.Graph, *, nodes: int = 100): | |
'''Takes a (preferably connected) subgraph.''' | |
sample = set() | |
to_expand = deque([0]) | |
while to_expand and len(sample) < nodes: | |
node = to_expand.pop() | |
for n in graph.neighbors(node): | |
if n not in sample: | |
sample.add(n) | |
to_expand.append(n) | |
if len(sample) == nodes: | |
break | |
return nx.Graph(graph.subgraph(sample)) | |
def _map_color(value): | |
cmap = matplotlib.cm.get_cmap('viridis') | |
value = (value - value.min()) / (value.max() - value.min()) | |
rgba = cmap(value) | |
return ['#{:02x}{:02x}{:02x}'.format(int(r*255), int(g*255), int(b*255)) for r, g, b in rgba[:, :3]] | |
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None): | |
nodes = graph.dfs['nodes'].copy() | |
if color_nodes_by: | |
nodes['color'] = _map_color(nodes[color_nodes_by]) | |
nodes = nodes.to_records() | |
edges = graph.dfs['edges'].drop_duplicates(['source', 'target']) | |
edges = edges.to_records() | |
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000/len(nodes)))) | |
v = { | |
'animationDuration': 500, | |
'animationEasingUpdate': 'quinticInOut', | |
'series': [ | |
{ | |
'type': 'graph', | |
'roam': True, | |
'lineStyle': { | |
'color': 'gray', | |
'curveness': 0.3, | |
}, | |
'emphasis': { | |
'focus': 'adjacency', | |
'lineStyle': { | |
'width': 10, | |
} | |
}, | |
'data': [ | |
{ | |
'id': str(n.id), | |
'x': float(pos[n.id][0]), 'y': float(pos[n.id][1]), | |
# Adjust node size to cover the same area no matter how many nodes there are. | |
'symbolSize': 50 / len(nodes) ** 0.5, | |
'itemStyle': {'color': n.color} if color_nodes_by else {}, | |
} | |
for n in nodes], | |
'links': [ | |
{'source': str(r.source), 'target': str(r.target)} | |
for r in edges], | |
}, | |
], | |
} | |
return v | |
def view_tables(bundle: Bundle): | |
v = { | |
'dataframes': { name: { | |
'columns': [str(c) for c in df.columns], | |
'data': df.values.tolist(), | |
} for name, df in bundle.dfs.items() }, | |
'relations': bundle.relations, | |
'other': bundle.other, | |
} | |
return v | |