lynxkite / server /llm_ops.py
darabos's picture
RAG demo working great!
ad438f1
raw
history blame
6.19 kB
'''For specifying an LLM agent logic flow.'''
from . import ops
import chromadb
import enum
import jinja2
import json
import openai
import numpy as np
import pandas as pd
from .executors import one_by_one
chat_client = openai.OpenAI(base_url="http://localhost:8080/v1")
embedding_client = openai.OpenAI(base_url="http://localhost:7997/")
jinja = jinja2.Environment()
chroma_client = chromadb.Client()
LLM_CACHE = {}
ENV = 'LLM logic'
one_by_one.register(ENV)
op = ops.op_registration(ENV)
def chat(*args, **kwargs):
key = json.dumps({'method': 'chat', 'args': args, 'kwargs': kwargs})
if key not in LLM_CACHE:
completion = chat_client.chat.completions.create(*args, **kwargs)
LLM_CACHE[key] = [c.message.content for c in completion.choices]
return LLM_CACHE[key]
def embedding(*args, **kwargs):
key = json.dumps({'method': 'embedding', 'args': args, 'kwargs': kwargs})
if key not in LLM_CACHE:
res = embedding_client.embeddings.create(*args, **kwargs)
[data] = res.data
LLM_CACHE[key] = data.embedding
return LLM_CACHE[key]
@op("Input CSV")
def input_csv(*, filename: ops.PathStr, key: str):
return pd.read_csv(filename).rename(columns={key: 'text'})
@op("Input document")
def input_document(*, filename: ops.PathStr):
with open(filename) as f:
return {'text': f.read()}
@op("Input chat")
def input_chat(*, chat: str):
return {'text': chat}
@op("Split document")
def split_document(input, *, delimiter: str = '\\n\\n'):
delimiter = delimiter.encode().decode('unicode_escape')
chunks = input['text'].split(delimiter)
return pd.DataFrame(chunks, columns=['text'])
@ops.input_position(input="top")
@op("Build document graph")
def build_document_graph(input):
return [{'source': i, 'target': i+1} for i in range(len(input)-1)]
@ops.input_position(nodes="top", edges="top")
@op("Predict links")
def predict_links(nodes, edges):
'''A placeholder for a real algorithm. For now just adds 2-hop neighbors.'''
edge_map = {} # Source -> [Targets]
for edge in edges:
edge_map.setdefault(edge['source'], [])
edge_map[edge['source']].append(edge['target'])
new_edges = []
for edge in edges:
for t in edge_map.get(edge['target'], []):
new_edges.append({'source': edge['source'], 'target': t})
return edges + new_edges
@ops.input_position(nodes="top", edges="top")
@op("Add neighbors")
def add_neighbors(nodes, edges, item):
nodes = pd.DataFrame(nodes)
edges = pd.DataFrame(edges)
matches = item['rag']
additional_matches = []
for m in matches:
node = nodes[nodes['text'] == m].index[0]
neighbors = edges[edges['source'] == node]['target'].to_list()
additional_matches.extend(nodes.loc[neighbors, 'text'])
return {**item, 'rag': matches + additional_matches}
@op("Create prompt")
def create_prompt(input, *, save_as='prompt', template: ops.LongStr):
assert template, 'Please specify the template. Refer to columns using the Jinja2 syntax.'
t = jinja.from_string(template)
prompt = t.render(**input)
return {**input, save_as: prompt}
@op("Ask LLM")
def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int = 100):
assert model, 'Please specify the model.'
assert 'prompt' in input, 'Please create the prompt first.'
options = {}
if accepted_regex:
options['extra_body'] = {
"guided_regex": accepted_regex,
}
results = chat(
model=model,
max_tokens=max_tokens,
messages=[
{"role": "user", "content": input['prompt']},
],
**options,
)
return [{**input, 'response': r} for r in results]
@op("View", view="table_view")
def view(input, *, _ctx: one_by_one.Context):
v = _ctx.last_result
if v:
columns = v['dataframes']['df']['columns']
v['dataframes']['df']['data'].append([input[c] for c in columns])
else:
columns = [str(c) for c in input.keys() if not str(c).startswith('_')]
v = {
'dataframes': { 'df': {
'columns': columns,
'data': [[input[c] for c in columns]],
}}
}
return v
@ops.input_position(input="right")
@ops.output_position(output="left")
@op("Loop")
def loop(input, *, max_iterations: int = 3, _ctx: one_by_one.Context):
'''Data can flow back here max_iterations-1 times.'''
key = f'iterations-{_ctx.node.id}'
input[key] = input.get(key, 0) + 1
if input[key] < max_iterations:
return input
@op('Branch', outputs=['true', 'false'])
def branch(input, *, expression: str):
res = eval(expression, input)
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input)
class RagEngine(enum.Enum):
Chroma = 'Chroma'
Custom = 'Custom'
@ops.input_position(db="top")
@op('RAG')
def rag(
input, db, *,
engine: RagEngine = RagEngine.Chroma,
input_field='text', db_field='text', num_matches: int = 10,
_ctx: one_by_one.Context):
if engine == RagEngine.Chroma:
last = _ctx.last_result
if last:
collection = last['_collection']
else:
collection_name = _ctx.node.id.replace(' ', '_')
for c in chroma_client.list_collections():
if c.name == collection_name:
chroma_client.delete_collection(name=collection_name)
collection = chroma_client.create_collection(name=collection_name)
collection.add(
documents=[r[db_field] for r in db],
ids=[str(i) for i in range(len(db))],
)
results = collection.query(
query_texts=[input[input_field]],
n_results=num_matches,
)
results = [db[int(r)] for r in results['ids'][0]]
return {**input, 'rag': results, '_collection': collection}
if engine == RagEngine.Custom:
model = 'google/gemma-2-2b-it'
chat = input[input_field]
embeddings = [embedding(input=[r[db_field]], model=model) for r in db]
q = embedding(input=[chat], model=model)
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
scores = [(i, cosine_similarity(q, e)) for i, e in enumerate(embeddings)]
scores.sort(key=lambda x: -x[1])
matches = [db[i][db_field] for i, _ in scores[:num_matches]]
return {**input, 'rag': matches}
@op('Run Python')
def run_python(input, *, template: str):
'''TODO: Implement.'''
return input