darabos's picture
Dependency-based repeat instead of using regions.
253ca3d
raw
history blame
15.5 kB
"""Boxes for defining PyTorch models."""
import copy
import enum
import graphlib
import types
import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
import dataclasses
from . import core
ENV = "PyTorch model"
def op(name, **kwargs):
_op = ops.op(ENV, name, **kwargs)
def decorator(func):
_op(func)
op = func.__op__
for p in op.inputs.values():
p.position = "bottom"
for p in op.outputs.values():
p.position = "top"
return func
return decorator
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[ops.Input(name=name, position="bottom", type="tensor") for name in inputs],
outputs=[ops.Output(name=name, position="top", type="tensor") for name in outputs],
params=params,
)
reg("Input: tensor", outputs=["x"], params=[P.basic("name")])
reg("Input: graph edges", outputs=["edges"])
reg("Input: sequential", outputs=["y"])
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
"Neural ODE",
inputs=["x"],
params=[
P.basic("relative_tolerance"),
P.basic("absolute_tolerance"),
P.options(
"method",
[
"dopri8",
"dopri5",
"bosh3",
"fehlberg2",
"adaptive_heun",
"euler",
"midpoint",
"rk4",
"explicit_adams",
"implicit_adams",
],
),
],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
@op("Linear")
def linear(x, *, output_dim="same"):
if output_dim == "same":
oshape = x.shape
else:
oshape = tuple(*x.shape[:-1], int(output_dim))
return Layer(torch.nn.Linear(x.shape, oshape), shape=oshape)
class ActivationTypes(enum.Enum):
ReLU = "ReLU"
Leaky_ReLU = "Leaky ReLU"
Tanh = "Tanh"
Mish = "Mish"
@op("Activation")
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
f = getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
return Layer(f, shape=x.shape)
reg("Softmax", inputs=["x"])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[
ops.Parameter.basic("times", 1, int),
ops.Parameter.basic("same_weights", False, bool),
],
)
ops.register_passive_op(
ENV,
"Recurrent chain",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[],
)
def _to_id(*strings: str) -> str:
"""Replaces all non-alphanumeric characters with underscores."""
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
@dataclasses.dataclass
class OpInput:
"""Ops get their inputs like this. They have to return a Layer made for this input."""
id: str
shape: tuple[int, ...]
@dataclasses.dataclass
class Layer:
"""Return this from an op. Must include a module and the shapes of the outputs."""
module: torch.nn.Module
shapes: list[tuple[int, ...]] | None = None # One for each output.
shape: dataclasses.InitVar[tuple[int, ...] | None] = None # Convenience for single output.
def __post_init__(self, shape):
assert not self.shapes or not shape, "Cannot set both shapes and shape."
if shape:
self.shapes = [shape]
class ColumnSpec(pydantic.BaseModel):
df: str
column: str
class ModelMapping(pydantic.BaseModel):
map: dict[str, ColumnSpec]
@dataclasses.dataclass
class ModelConfig:
model: torch.nn.Module
model_inputs: list[str]
model_outputs: list[str]
loss_inputs: list[str]
loss: torch.nn.Module
optimizer: torch.optim.Optimizer
source_workspace: str | None = None
trained: bool = False
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
model_inputs = [inputs[i] for i in self.model_inputs]
output = self.model(*model_inputs)
if not isinstance(output, tuple):
output = (output,)
values = {k: v for k, v in zip(self.model_outputs, output)}
return values
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# TODO: Do multiple batches.
self.model.eval()
return self._forward(inputs)
def train(self, inputs: dict[str, torch.Tensor]) -> float:
"""Train the model for one epoch. Returns the loss."""
# TODO: Do multiple batches.
self.model.train()
self.optimizer.zero_grad()
values = self._forward(inputs)
values.update(inputs)
loss_inputs = [values[i] for i in self.loss_inputs]
loss = self.loss(*loss_inputs)
loss.backward()
self.optimizer.step()
return loss.item()
def copy(self):
"""Returns a copy of the model."""
c = dataclasses.replace(self)
c.model = copy.deepcopy(self.model)
return c
def metadata(self):
return {
"type": "model",
"model": {
"inputs": self.model_inputs,
"outputs": self.model_outputs,
"loss_inputs": self.loss_inputs,
"trained": self.trained,
},
}
def _add_op(op, params, inputs, outputs, sizes, layers):
op_inputs = []
for i in op.inputs.keys():
id = getattr(inputs, i)
op_inputs.append(OpInput(id, shape=sizes.get(id, 1)))
if op.func != ops.no_op:
layer = op.func(*op_inputs, **params)
else:
layer = Layer(torch.nn.Identity(), shapes=[i.shape for i in op_inputs])
input_ids = ", ".join(i.id for i in op_inputs)
output_ids = []
for o, shape in zip(op.outputs.keys(), layer.shapes):
id = getattr(outputs, o)
output_ids.append(id)
sizes[id] = shape
output_ids = ", ".join(output_ids)
layers.append((layer.module, f"{input_ids} -> {output_ids}"))
def _all_dependencies(node: str, dependencies: dict[str, list[str]]) -> set[str]:
"""Returns all dependencies of a node."""
deps = set()
for dep in dependencies[node]:
deps.add(dep)
deps.update(_all_dependencies(dep, dependencies))
return deps
def build_model(ws: workspace.Workspace, inputs: dict[str, torch.Tensor]) -> ModelConfig:
"""Builds the model described in the workspace."""
catalog = ops.CATALOGS[ENV]
optimizers = []
nodes = {}
for node in ws.nodes:
nodes[node.id] = node
if node.data.title == "Optimizer":
optimizers.append(node.id)
assert optimizers, "No optimizer found."
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
[optimizer] = optimizers
dependencies = {n.id: [] for n in ws.nodes}
inv_dependencies = {n.id: [] for n in ws.nodes}
in_edges = {}
out_edges = {}
repeats = []
for e in ws.edges:
if nodes[e.target].data.title == "Repeat":
repeats.append(e.target)
dependencies[e.target].append(e.source)
inv_dependencies[e.source].append(e.target)
in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
(e.source, e.sourceHandle)
)
out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
(e.target, e.targetHandle)
)
# Split repeat boxes into start and end, and insert them into the flow.
# TODO: Think about recursive repeats.
for repeat in repeats:
start_id = f"START {repeat}"
end_id = f"END {repeat}"
# repeat -> first <- real_input
# ...becomes...
# real_input -> start -> first
first, firsth = out_edges[repeat]["output"][0]
[(real_input, real_inputh)] = [
k for k in in_edges[first][firsth] if k != (repeat, "output")
]
dependencies[first].remove(repeat)
dependencies[first].append(start_id)
dependencies[start_id] = [real_input]
out_edges[real_input][real_inputh] = [
k if k != (first, firsth) else (start_id, "input")
for k in out_edges[real_input][real_inputh]
]
in_edges[start_id] = {"input": [(real_input, real_inputh)]}
out_edges[start_id] = {"output": [(first, firsth)]}
in_edges[first][firsth] = [(start_id, "output")]
# repeat <- last -> real_output
# ...becomes...
# last -> end -> real_output
last, lasth = in_edges[repeat]["input"][0]
[(real_output, real_outputh)] = [
k for k in out_edges[last][lasth] if k != (repeat, "input")
]
del dependencies[repeat]
dependencies[end_id] = [last]
dependencies[real_output].append(end_id)
out_edges[last][lasth] = [(end_id, "input")]
in_edges[end_id] = {"input": [(last, lasth)]}
out_edges[end_id] = {"output": [(real_output, real_outputh)]}
in_edges[real_output][real_outputh] = [
k if k != (last, lasth) else (end_id, "output")
for k in in_edges[real_output][real_outputh]
]
# Walk the graph in topological order.
sizes = {}
for k, i in inputs.items():
sizes[k] = i.shape[-1]
ts = graphlib.TopologicalSorter(dependencies)
layers = []
loss_layers = []
regions: dict[str, set[str]] = {node_id: set() for node_id in dependencies}
cfg = {}
used_in_model = set()
made_in_model = set()
used_in_loss = set()
made_in_loss = set()
for node_id in ts.static_order():
if node_id.startswith("START "):
node = nodes[node_id.removeprefix("START ")]
elif node_id.startswith("END "):
node = nodes[node_id.removeprefix("END ")]
else:
node = nodes[node_id]
t = node.data.title
op = catalog[t]
p = op.convert_params(node.data.params)
for b in dependencies[node_id]:
regions[node_id] |= regions[b]
if "loss" in t:
regions[node_id].add("loss")
inputs = {}
for n in in_edges.get(node_id, []):
for b, h in in_edges[node_id][n]:
i = _to_id(b, h)
inputs[n] = i
if "loss" in regions[node_id]:
used_in_loss.add(i)
else:
used_in_model.add(i)
outputs = {}
for out in out_edges.get(node_id, []):
i = _to_id(node_id, out)
outputs[out] = i
if not t.startswith("Input:"): # The outputs of inputs are not "made" by us.
if "loss" in regions[node_id]:
made_in_loss.add(i)
else:
made_in_model.add(i)
inputs = types.SimpleNamespace(**inputs)
outputs = types.SimpleNamespace(**outputs)
ls = loss_layers if "loss" in regions[node_id] else layers
match t:
case "MSE loss":
ls.append(
(
torch.nn.functional.mse_loss,
f"{inputs.x}, {inputs.y} -> {outputs.loss}",
)
)
case "Repeat":
ls.append((torch.nn.Identity(), f"{inputs.input} -> {outputs.output}"))
sizes[outputs.output] = sizes.get(inputs.input, 1)
if node_id.startswith("START "):
regions[node_id].add(("repeat", node_id.removeprefix("START ")))
else:
repeat_id = node_id.removeprefix("END ")
start_id = f"START {repeat_id}"
print(f"repeat {repeat_id} ending")
after_start = _all_dependencies(start_id, inv_dependencies)
after_end = _all_dependencies(node_id, inv_dependencies)
before_end = _all_dependencies(node_id, dependencies)
affected_nodes = after_start - after_end
repeated_nodes = after_start & before_end
assert affected_nodes == repeated_nodes, (
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
)
regions[node_id].remove(("repeat", repeat_id))
for n in repeated_nodes:
print(f"repeating {n}")
case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
pass
case _:
_add_op(op, p, inputs, outputs, sizes, ls)
cfg["model_inputs"] = list(used_in_model - made_in_model)
cfg["model_outputs"] = list(made_in_model & used_in_loss)
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
# Make sure the trained output is output from the last model layer.
outputs = ", ".join(cfg["model_outputs"])
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
# Create model.
cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers)
# Make sure the loss is output from the last loss layer.
[(lossb, lossh)] = in_edges[optimizer]["loss"]
lossi = _to_id(lossb, lossh)
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
# Create loss function.
cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
assert not list(cfg["loss"].parameters()), (
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
)
# Create optimizer.
op = catalog["Optimizer"]
p = op.convert_params(nodes[optimizer].data.params)
o = getattr(torch.optim, p["type"].name)
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
return ModelConfig(**cfg)
def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
"""Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
if m is None:
return {}
tensors = {}
for k, v in m.map.items():
if v.df in b.dfs and v.column in b.dfs[v.df]:
tensors[k] = torch.tensor(b.dfs[v.df][v.column].to_list(), dtype=torch.float32)
return tensors