Spaces:
Running
Running
File size: 11,280 Bytes
2af956d 45e4c73 fc15efa f366c41 5e29feb ac05fb9 f141fec d2d2eac 0b71528 b6d30cb ca01fa3 b6d30cb f366c41 bf8f4f1 ca01fa3 2af956d 9497543 45e4c73 fc15efa 114fd1c ab685a3 a112474 fc15efa a112474 fc15efa 114fd1c fc15efa e11e511 a112474 e11e511 fc15efa e11e511 fc15efa e11e511 fc15efa e11e511 fc15efa e11e511 fc15efa 75c875f ca01fa3 f366c41 45e4c73 ca01fa3 16682aa a112474 f366c41 a112474 f366c41 16682aa 89a8508 5e29feb 89a8508 16682aa c66f4fa ac05fb9 45e4c73 b6d30cb d842e73 f366c41 2af956d f366c41 a112474 f366c41 dcedc35 f366c41 0b71528 2af956d 0b71528 c51c9b4 0b71528 c51c9b4 0b71528 f366c41 75c875f 45e4c73 4c8d260 45e4c73 d4a220c b6d30cb de9a525 ffbad5c de9a525 a112474 de9a525 45e4c73 ca01fa3 8efcf30 0af1e7d 2af956d 0af1e7d 2af956d 45e4c73 4b66e0a c66f4fa a112474 c66f4fa 45e4c73 a112474 0af1e7d 45e4c73 0af1e7d 45e4c73 0af1e7d 45e4c73 c66f4fa 45e4c73 0af1e7d 45e4c73 0af1e7d 045796a a112474 45e4c73 0af1e7d a112474 0af1e7d 45e4c73 a18645a 8efcf30 c6d869b bf8f4f1 c51c9b4 bf8f4f1 a112474 bf8f4f1 6934d0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""Graph analytics operations."""
import enum
import os
import fsspec
from lynxkite.core import ops
from collections import deque
from . import core
import grandcypher
import matplotlib
import networkx as nx
import pandas as pd
import polars as pl
import json
op = ops.op_registration(core.ENV)
class FileFormat(enum.StrEnum):
csv = "csv"
parquet = "parquet"
json = "json"
excel = "excel"
@op(
"Import file",
params=[
ops.ParameterGroup(
name="file_format_group",
selector=ops.Parameter(name="file_format", type=FileFormat, default=FileFormat.csv),
groups={
"csv": [
ops.Parameter.basic("columns", type=str, default="<from file>"),
ops.Parameter.basic("separator", type=str, default="<auto>"),
],
"parquet": [],
"json": [],
"excel": [ops.Parameter.basic("sheet_name", type=str, default="Sheet1")],
},
default=FileFormat.csv,
),
],
)
def import_file(
*, file_path: str, table_name: str, file_format: FileFormat, **kwargs
) -> core.Bundle:
"""Read the contents of the a file into a `Bundle`.
Args:
file_path: Path to the file to import.
table_name: Name to use for identifying the table in the bundle.
file_format: Format of the file. Has to be one of the values in the `FileFormat` enum.
Returns:
Bundle: Bundle with a single table with the contents of the file.
"""
if file_format == "csv":
names = kwargs.get("columns", "<from file>")
names = pd.api.extensions.no_default if names == "<from file>" else names.split(",")
sep = kwargs.get("separator", "<auto>")
sep = pd.api.extensions.no_default if sep == "<auto>" else sep
df = pd.read_csv(file_path, names=names, sep=sep)
elif file_format == "json":
df = pd.read_json(file_path)
elif file_format == "parquet":
df = pd.read_parquet(file_path)
elif file_format == "excel":
df = pd.read_excel(file_path, sheet_name=kwargs.get("sheet_name", "Sheet1"))
else:
df = ValueError(f"Unsupported file format: {file_format}")
return core.Bundle(dfs={table_name: df})
@op("Import Parquet")
def import_parquet(*, filename: str):
"""Imports a Parquet file."""
return pd.read_parquet(filename)
@op("Import CSV", slow=True)
def import_csv(*, filename: str, columns: str = "<from file>", separator: str = "<auto>"):
"""Imports a CSV file."""
return pd.read_csv(
filename,
names=pd.api.extensions.no_default if columns == "<from file>" else columns.split(","),
sep=pd.api.extensions.no_default if separator == "<auto>" else separator,
)
@op("Import GraphML", slow=True)
def import_graphml(*, filename: str):
"""Imports a GraphML file."""
files = fsspec.open_files(filename, compression="infer")
for f in files:
if ".graphml" in f.path:
with f as f:
return nx.read_graphml(f)
raise ValueError(f"No .graphml file found at {filename}")
@op("Graph from OSM", slow=True)
def import_osm(*, location: str):
import osmnx as ox
return ox.graph.graph_from_place(location, network_type="drive")
@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
graph = graph.copy()
graph.remove_edges_from(nx.selfloop_edges(graph))
return graph
@op("Discard parallel edges")
def discard_parallel_edges(graph: nx.Graph):
return nx.DiGraph(graph)
@op("SQL")
def sql(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
if os.environ.get("NX_CUGRAPH_AUTOCONFIG", "").strip().lower() == "true":
with pl.Config() as cfg:
cfg.set_verbose(True)
res = pl.SQLContext(bundle.dfs).execute(query).collect(engine="gpu").to_pandas()
# TODO: Currently `collect()` moves the data from cuDF to Polars. Then we convert it to Pandas,
# which (hopefully) puts it back into cuDF. Hopefully we will be able to keep it in cuDF.
else:
res = pl.SQLContext(bundle.dfs).execute(query).collect().to_pandas()
bundle.dfs[save_as] = res
return bundle
@op("Cypher")
def cypher(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a Cypher query on the graph in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
graph = bundle.to_nx()
res = grandcypher.GrandCypher(graph).run(query)
bundle.dfs[save_as] = pd.DataFrame(res)
return bundle
@op("Organize")
def organize(bundle: list[core.Bundle], *, code: ops.LongStr) -> core.Bundle:
"""Lets you rename/copy/delete DataFrames, and modify relations.
TODO: Merge this with "Create graph".
"""
bundle = bundle.copy()
exec(code, globals(), {"bundle": bundle})
return bundle
@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
"""Takes a (preferably connected) subgraph."""
sample = set()
to_expand = deque([next(graph.nodes.keys().__iter__())])
while to_expand and len(sample) < nodes:
node = to_expand.pop()
for n in graph.neighbors(node):
if n not in sample:
sample.add(n)
to_expand.append(n)
if len(sample) == nodes:
break
return nx.Graph(graph.subgraph(sample))
def _map_color(value):
if pd.api.types.is_numeric_dtype(value):
cmap = matplotlib.cm.get_cmap("viridis")
value = (value - value.min()) / (value.max() - value.min())
rgba = cmap(value.values)
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in rgba[:, :3]
]
else:
cmap = matplotlib.cm.get_cmap("Paired")
categories = pd.Index(value.unique())
colors = cmap.colors[: len(categories)]
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in [colors[min(len(colors) - 1, categories.get_loc(v))] for v in value]
]
@op("Visualize graph", view="visualization")
def visualize_graph(
graph: core.Bundle,
*,
color_nodes_by: ops.NodeAttribute = None,
label_by: ops.NodeAttribute = None,
color_edges_by: ops.EdgeAttribute = None,
):
nodes = core.df_for_frontend(graph.dfs["nodes"], 10_000)
if color_nodes_by:
nodes["color"] = _map_color(nodes[color_nodes_by])
for cols in ["x y", "long lat"]:
x, y = cols.split()
if (
x in nodes.columns
and nodes[x].dtype == "float64"
and y in nodes.columns
and nodes[y].dtype == "float64"
):
cx, cy = nodes[x].mean(), nodes[y].mean()
dx, dy = nodes[x].std(), nodes[y].std()
# Scale up to avoid float precision issues and because eCharts omits short edges.
scale_x = 100 / max(dx, dy)
scale_y = scale_x
if y == "lat":
scale_y *= -1
pos = {
node_id: ((row[x] - cx) * scale_x, (row[y] - cy) * scale_y)
for node_id, row in nodes.iterrows()
}
curveness = 0 # Street maps are better with straight streets.
break
else:
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000 / len(nodes))))
curveness = 0.3
nodes = nodes.to_records()
edges = core.df_for_frontend(graph.dfs["edges"].drop_duplicates(["source", "target"]), 10_000)
if color_edges_by:
edges["color"] = _map_color(edges[color_edges_by])
edges = edges.to_records()
v = {
"animationDuration": 500,
"animationEasingUpdate": "quinticInOut",
"tooltip": {"show": True},
"series": [
{
"type": "graph",
# Mouse zoom/panning is disabled for now. It interacts badly with ReactFlow.
# "roam": True,
"lineStyle": {
"color": "gray",
"curveness": curveness,
},
"emphasis": {
"focus": "adjacency",
"lineStyle": {
"width": 10,
},
},
"label": {"position": "top", "formatter": "{b}"},
"data": [
{
"id": str(n.id),
"x": float(pos[n.id][0]),
"y": float(pos[n.id][1]),
# Adjust node size to cover the same area no matter how many nodes there are.
"symbolSize": 50 / len(nodes) ** 0.5,
"itemStyle": {"color": n.color} if color_nodes_by else {},
"label": {"show": label_by is not None},
"name": str(getattr(n, label_by, "")) if label_by else None,
"value": str(getattr(n, color_nodes_by, "")) if color_nodes_by else None,
}
for n in nodes
],
"links": [
{
"source": str(r.source),
"target": str(r.target),
"lineStyle": {"color": r.color} if color_edges_by else {},
"value": str(getattr(r, color_edges_by, "")) if color_edges_by else None,
}
for r in edges
],
},
],
}
return v
@op("View tables", view="table_view")
def view_tables(bundle: core.Bundle, *, _tables_open: str = "", limit: int = 100):
_tables_open = _tables_open # The frontend uses this parameter to track which tables are open.
return bundle.to_dict(limit=limit)
@op(
"Create graph",
view="graph_creation_view",
outputs=["output"],
)
def create_graph(bundle: core.Bundle, *, relations: str = None) -> core.Bundle:
"""Replace relations of the given bundle
relations is a stringified JSON, instead of a dict, because complex Yjs types (arrays, maps)
are not currently supported in the UI.
Args:
bundle: Bundle to modify
relations (str, optional): Set of relations to set for the bundle. The parameter
should be a JSON object where the keys are relation names and the values are
a dictionary representation of a `RelationDefinition`.
Defaults to None.
Returns:
Bundle: The input bundle with the new relations set.
"""
bundle = bundle.copy()
if not (relations is None or relations.strip() == ""):
bundle.relations = [core.RelationDefinition(**r) for r in json.loads(relations).values()]
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
@op("Biomedical foundation graph (PLACEHOLDER)")
def biomedical_foundation_graph(*, filter_nodes: str):
"""Loads the gigantic Lynx-maintained knowledge graph. Includes drugs, diseases, genes, proteins, etc."""
return None
|