Spaces:
Running
Running
File size: 19,314 Bytes
0daac8b 5951713 acb2b67 2f4e3c5 5f57a53 f501df1 0daac8b f501df1 5951713 ad5c4e4 0daac8b acb2b67 0daac8b 1270bff 0daac8b e6745ef 0daac8b 8387566 0daac8b 8387566 313b753 acb2b67 f501df1 0daac8b acb2b67 edfd36a f501df1 0daac8b f501df1 0daac8b 563314e 3aa378b 2f4e3c5 9de2c6f 2f4e3c5 3a28e0d f501df1 8387566 f501df1 5951713 2f4e3c5 5951713 2f4e3c5 acb2b67 edfd36a acb2b67 edfd36a acb2b67 edfd36a acb2b67 edfd36a acb2b67 5f57a53 5951713 2f4e3c5 5951713 2f4e3c5 bd0c2d5 2f4e3c5 ad5c4e4 5951713 ad5c4e4 f89e59f 5f57a53 5951713 5f57a53 2f4e3c5 1270bff f501df1 edfd36a bd0c2d5 e6745ef edfd36a e6745ef edfd36a e6745ef edfd36a e6745ef edfd36a e6745ef edfd36a e6745ef edfd36a e6745ef 2f4e3c5 edfd36a ad5c4e4 2f4e3c5 9de2c6f edfd36a 9de2c6f 1d11da9 bd0c2d5 edfd36a 1d11da9 bd0c2d5 e6745ef bd0c2d5 acb2b67 edfd36a bd0c2d5 edfd36a bd0c2d5 edfd36a bd0c2d5 edfd36a bd0c2d5 edfd36a ad5c4e4 5951713 ad5c4e4 5f57a53 5951713 1270bff ad5c4e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
"""Boxes for defining PyTorch models."""
import copy
import enum
import graphlib
import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
import dataclasses
from . import core
ENV = "PyTorch model"
def op(name, **kwargs):
_op = ops.op(ENV, name, **kwargs)
def decorator(func):
_op(func)
op = func.__op__
for p in op.inputs.values():
p.position = "bottom"
for p in op.outputs.values():
p.position = "top"
return func
return decorator
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[ops.Input(name=name, position="bottom", type="tensor") for name in inputs],
outputs=[ops.Output(name=name, position="top", type="tensor") for name in outputs],
params=params,
)
reg("Input: tensor", outputs=["output"], params=[P.basic("name")])
reg("Input: graph edges", outputs=["edges"])
reg("Input: sequential", outputs=["y"])
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
"Neural ODE",
inputs=["x"],
params=[
P.basic("relative_tolerance"),
P.basic("absolute_tolerance"),
P.options(
"method",
[
"dopri8",
"dopri5",
"bosh3",
"fehlberg2",
"adaptive_heun",
"euler",
"midpoint",
"rk4",
"explicit_adams",
"implicit_adams",
],
),
],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
@op("Linear")
def linear(x, *, output_dim="same"):
if output_dim == "same":
oshape = x.shape
else:
oshape = tuple(*x.shape[:-1], int(output_dim))
return Layer(torch.nn.Linear(x.shape, oshape), shape=oshape)
class ActivationTypes(enum.Enum):
ReLU = "ReLU"
Leaky_ReLU = "Leaky ReLU"
Tanh = "Tanh"
Mish = "Mish"
@op("Activation")
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
f = getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
return Layer(f, shape=x.shape)
@op("MSE loss")
def mse_loss(x, y):
return Layer(torch.nn.functional.mse_loss, shape=[1])
reg("Softmax", inputs=["x"])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[
ops.Parameter.basic("times", 1, int),
ops.Parameter.basic("same_weights", False, bool),
],
)
ops.register_passive_op(
ENV,
"Recurrent chain",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[],
)
def _to_id(*strings: str) -> str:
"""Replaces all non-alphanumeric characters with underscores."""
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
@dataclasses.dataclass
class TensorRef:
"""Ops get their inputs like this. They have to return a Layer made for this input."""
_id: str
shape: tuple[int, ...]
@dataclasses.dataclass
class Layer:
"""Return this from an op. Must include a module and the shapes of the outputs."""
module: torch.nn.Module
shapes: list[tuple[int, ...]] | None = None # One for each output.
shape: dataclasses.InitVar[tuple[int, ...] | None] = None # Convenience for single output.
# Set by ModelBuilder.
_origin_id: str | None = None
_inputs: list[TensorRef] | None = None
_outputs: list[TensorRef] | None = None
def __post_init__(self, shape):
assert not self.shapes or not shape, "Cannot set both shapes and shape."
if shape:
self.shapes = [shape]
def _for_sequential(self):
inputs = ", ".join(i._id for i in self._inputs)
outputs = ", ".join(o._id for o in self._outputs)
return self.module, f"{inputs} -> {outputs}"
class ColumnSpec(pydantic.BaseModel):
df: str
column: str
class ModelMapping(pydantic.BaseModel):
map: dict[str, ColumnSpec]
@dataclasses.dataclass
class ModelConfig:
model: torch.nn.Module
model_inputs: list[str]
model_outputs: list[str]
loss_inputs: list[str]
loss: torch.nn.Module
optimizer: torch.optim.Optimizer
source_workspace: str | None = None
trained: bool = False
def num_parameters(self) -> int:
return sum(p.numel() for p in self.model.parameters())
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
model_inputs = [inputs[i] for i in self.model_inputs]
output = self.model(*model_inputs)
if not isinstance(output, tuple):
output = (output,)
values = {k: v for k, v in zip(self.model_outputs, output)}
return values
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# TODO: Do multiple batches.
self.model.eval()
return self._forward(inputs)
def train(self, inputs: dict[str, torch.Tensor]) -> float:
"""Train the model for one epoch. Returns the loss."""
# TODO: Do multiple batches.
self.model.train()
self.optimizer.zero_grad()
values = self._forward(inputs)
values.update(inputs)
loss_inputs = [values[i] for i in self.loss_inputs]
loss = self.loss(*loss_inputs)
loss.backward()
self.optimizer.step()
return loss.item()
def copy(self):
"""Returns a copy of the model."""
c = dataclasses.replace(self)
c.model = copy.deepcopy(self.model)
return c
def metadata(self):
return {
"type": "model",
"model": {
"inputs": self.model_inputs,
"outputs": self.model_outputs,
"loss_inputs": self.loss_inputs,
"trained": self.trained,
},
}
def build_model(ws: workspace.Workspace, inputs: dict[str, torch.Tensor]) -> ModelConfig:
"""Builds the model described in the workspace."""
builder = ModelBuilder(ws, inputs)
return builder.build_model()
class ModelBuilder:
"""The state shared between methods that are used to build the model."""
def __init__(self, ws: workspace.Workspace, inputs: dict[str, torch.Tensor]):
self.catalog = ops.CATALOGS[ENV]
optimizers = []
self.nodes: dict[str, workspace.WorkspaceNode] = {}
repeats: list[str] = []
for node in ws.nodes:
self.nodes[node.id] = node
if node.data.title == "Optimizer":
optimizers.append(node.id)
elif node.data.title == "Repeat":
repeats.append(node.id)
self.nodes[f"START {node.id}"] = node
self.nodes[f"END {node.id}"] = node
assert optimizers, "No optimizer found."
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
[self.optimizer] = optimizers
self.dependencies = {n: [] for n in self.nodes}
self.in_edges: dict[str, dict[str, list[(str, str)]]] = {n: {} for n in self.nodes}
self.out_edges: dict[str, dict[str, list[(str, str)]]] = {n: {} for n in self.nodes}
for e in ws.edges:
self.dependencies[e.target].append(e.source)
self.in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
(e.source, e.sourceHandle)
)
self.out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
(e.target, e.targetHandle)
)
# Split repeat boxes into start and end, and insert them into the flow.
# TODO: Think about recursive repeats.
for repeat in repeats:
if not self.out_edges[repeat] or not self.in_edges[repeat]:
continue
start_id = f"START {repeat}"
end_id = f"END {repeat}"
# repeat -> first <- real_input
# ...becomes...
# real_input -> start -> first
first, firsth = self.out_edges[repeat]["output"][0]
[(real_input, real_inputh)] = [
k for k in self.in_edges[first][firsth] if k != (repeat, "output")
]
self.dependencies[first].remove(repeat)
self.dependencies[first].append(start_id)
self.dependencies[start_id] = [real_input]
self.out_edges[real_input][real_inputh] = [
k if k != (first, firsth) else (start_id, "input")
for k in self.out_edges[real_input][real_inputh]
]
self.in_edges[start_id] = {"input": [(real_input, real_inputh)]}
self.out_edges[start_id] = {"output": [(first, firsth)]}
self.in_edges[first][firsth] = [(start_id, "output")]
# repeat <- last -> real_output
# ...becomes...
# last -> end -> real_output
last, lasth = self.in_edges[repeat]["input"][0]
[(real_output, real_outputh)] = [
k for k in self.out_edges[last][lasth] if k != (repeat, "input")
]
del self.dependencies[repeat]
self.dependencies[end_id] = [last]
self.dependencies[real_output].append(end_id)
self.out_edges[last][lasth] = [(end_id, "input")]
self.in_edges[end_id] = {"input": [(last, lasth)]}
self.out_edges[end_id] = {"output": [(real_output, real_outputh)]}
self.in_edges[real_output][real_outputh] = [
k if k != (last, lasth) else (end_id, "output")
for k in self.in_edges[real_output][real_outputh]
]
self.inv_dependencies = {n: [] for n in self.nodes}
for k, v in self.dependencies.items():
for i in v:
self.inv_dependencies[i].append(k)
self.sizes = {}
for k, i in inputs.items():
self.sizes[k] = i.shape[-1]
self.layers = []
# Clean up disconnected nodes.
disconnected = set()
for node_id in self.nodes:
op = self.catalog[self.nodes[node_id].data.title]
if len(self.in_edges[node_id]) != len(op.inputs):
disconnected.add(node_id)
disconnected |= self.all_upstream(node_id)
for node_id in disconnected:
del self.dependencies[node_id]
del self.in_edges[node_id]
del self.out_edges[node_id]
del self.inv_dependencies[node_id]
del self.nodes[node_id]
def all_upstream(self, node: str) -> set[str]:
"""Returns all nodes upstream of a node."""
deps = set()
for dep in self.dependencies[node]:
deps.add(dep)
deps.update(self.all_upstream(dep))
return deps
def all_downstream(self, node: str) -> set[str]:
"""Returns all nodes downstream of a node."""
deps = set()
for dep in self.inv_dependencies[node]:
deps.add(dep)
deps.update(self.all_downstream(dep))
return deps
def run_node(self, node_id: str) -> None:
"""Adds the layer(s) produced by this node to self.layers."""
node = self.nodes[node_id]
t = node.data.title
op = self.catalog[t]
p = op.convert_params(node.data.params)
match t:
case "Repeat":
if node_id.startswith("END "):
repeat_id = node_id.removeprefix("END ")
start_id = f"START {repeat_id}"
[last_output] = self.in_edges[node_id]["input"]
after_start = self.all_downstream(start_id)
after_end = self.all_downstream(node_id)
before_end = self.all_upstream(node_id)
affected_nodes = after_start - after_end - {node_id}
repeated_nodes = after_start & before_end
assert affected_nodes == repeated_nodes, (
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
)
repeated_layers = [e for e in self.layers if e._origin_id in repeated_nodes]
assert p["times"] >= 1, f"Cannot repeat {repeat_id} {p['times']} times."
for i in range(p["times"] - 1):
# Copy repeat section's output to repeat section's input.
self.layers.append(
self.empty_layer(
node_id,
inputs=[_to_id(*last_output)],
outputs=[_to_id(start_id, "output")],
)
)
# Repeat the layers in the section.
for layer in repeated_layers:
if p["same_weights"]:
self.layers.append(
Layer(
layer.module,
shapes=layer.shapes,
_origin_id=layer._origin_id,
_inputs=layer._inputs,
_outputs=layer._outputs,
)
)
else:
self.run_node(layer._origin_id)
self.layers.append(self.run_op(node_id, op, p))
case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
return
case _:
self.layers.append(self.run_op(node_id, op, p))
def run_op(self, node_id: str, op: ops.Op, params) -> Layer:
"""Returns the layer produced by this op."""
inputs = [_to_id(*i) for n in op.inputs for i in self.in_edges[node_id][n]]
outputs = [_to_id(node_id, n) for n in op.outputs]
layer = self.empty_layer(node_id, inputs, outputs)
if op.func != ops.no_op:
op_layer = op.func(*layer._inputs, **params)
layer.module = op_layer.module
layer.shapes = op_layer.shapes
for o in layer._outputs:
self.sizes[o._id] = o.shape
return layer
def empty_layer(self, id: str, inputs: list[str], outputs: list[str]) -> Layer:
"""Creates an identity layer. Assumes that outputs have the same shapes as inputs."""
layer_inputs = [TensorRef(i, shape=self.sizes.get(i, 1)) for i in inputs]
layer_outputs = []
for i, o in zip(inputs, outputs):
shape = self.sizes.get(i, 1)
layer_outputs.append(TensorRef(o, shape=shape))
self.sizes[o] = shape
layer = Layer(
torch.nn.Identity(),
shapes=[self.sizes[o._id] for o in layer_outputs],
_inputs=layer_inputs,
_outputs=layer_outputs,
_origin_id=id,
)
return layer
def build_model(self) -> ModelConfig:
# Walk the graph in topological order.
ts = graphlib.TopologicalSorter(self.dependencies)
for node_id in ts.static_order():
self.run_node(node_id)
return self.get_config()
def get_config(self) -> ModelConfig:
# Split the design into model and loss.
loss_nodes = set()
for node_id in self.nodes:
if "loss" in self.nodes[node_id].data.title:
loss_nodes.add(node_id)
loss_nodes |= self.all_downstream(node_id)
layers = []
loss_layers = []
for layer in self.layers:
if layer._origin_id in loss_nodes:
loss_layers.append(layer)
else:
layers.append(layer)
used_in_model = set(input._id for layer in layers for input in layer._inputs)
used_in_loss = set(input._id for layer in loss_layers for input in layer._inputs)
made_in_model = set(output._id for layer in layers for output in layer._outputs)
made_in_loss = set(output._id for layer in loss_layers for output in layer._outputs)
layers = [layer._for_sequential() for layer in layers]
loss_layers = [layer._for_sequential() for layer in loss_layers]
cfg = {}
cfg["model_inputs"] = list(used_in_model - made_in_model)
cfg["model_outputs"] = list(made_in_model & used_in_loss)
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
# Make sure the trained output is output from the last model layer.
outputs = ", ".join(cfg["model_outputs"])
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
# Create model.
cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers)
# Make sure the loss is output from the last loss layer.
[(lossb, lossh)] = self.in_edges[self.optimizer]["loss"]
lossi = _to_id(lossb, lossh)
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
# Create loss function.
cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
assert not list(cfg["loss"].parameters()), f"loss should have no parameters: {loss_layers}"
# Create optimizer.
op = self.catalog["Optimizer"]
p = op.convert_params(self.nodes[self.optimizer].data.params)
o = getattr(torch.optim, p["type"].name)
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
return ModelConfig(**cfg)
def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
"""Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
if m is None:
return {}
tensors = {}
for k, v in m.map.items():
if v.df in b.dfs and v.column in b.dfs[v.df]:
tensors[k] = torch.tensor(b.dfs[v.df][v.column].to_list(), dtype=torch.float32)
return tensors
|