Spaces:
Running
Running
File size: 2,016 Bytes
83b1026 da1ea6b 83b1026 da1ea6b 83b1026 da1ea6b e792fcf b133985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
"""Boxes for defining PyTorch models."""
from lynxkite.core import ops
from lynxkite.core.ops import Parameter as P
ENV = "PyTorch model"
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[
ops.Input(name=name, position="bottom", type="tensor") for name in inputs
],
outputs=[
ops.Output(name=name, position="top", type="tensor") for name in outputs
],
params=params,
)
reg("Input: features", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Attention", inputs=["q", "k", "v"], outputs=["x"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
"Activation",
inputs=["x"],
params=[P.options("type", ["ReLU", "LeakyReLU", "Tanh", "Mish"])],
)
reg("Supervised loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[ops.Parameter.basic("times", 1, int)],
)
|