File size: 14,742 Bytes
0daac8b
 
5951713
acb2b67
2f4e3c5
5951713
5f57a53
 
f501df1
0daac8b
f501df1
 
5951713
ad5c4e4
0daac8b
 
 
 
acb2b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0daac8b
 
 
 
 
 
1270bff
 
0daac8b
 
 
 
acb2b67
0daac8b
8387566
0daac8b
8387566
313b753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb2b67
 
f501df1
0daac8b
 
acb2b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f501df1
0daac8b
 
 
 
 
 
f501df1
 
 
 
 
 
 
0daac8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563314e
 
3aa378b
 
 
 
 
2f4e3c5
 
9de2c6f
2f4e3c5
3a28e0d
f501df1
8387566
 
 
 
 
 
 
 
f501df1
5951713
2f4e3c5
5951713
2f4e3c5
 
acb2b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f57a53
 
 
 
 
 
 
 
 
5951713
2f4e3c5
 
 
 
 
 
 
5951713
 
2f4e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad5c4e4
 
5951713
 
ad5c4e4
 
f89e59f
5f57a53
 
 
 
 
 
5951713
5f57a53
 
 
2f4e3c5
1270bff
f501df1
ad5c4e4
f501df1
2f4e3c5
f501df1
2f4e3c5
 
 
f501df1
 
 
2f4e3c5
5951713
 
9de2c6f
f501df1
9de2c6f
 
2f4e3c5
5951713
2f4e3c5
 
5951713
 
 
9de2c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d92e2
2f4e3c5
 
 
 
 
9de2c6f
2f4e3c5
5951713
 
 
 
2f4e3c5
9de2c6f
 
 
 
 
 
2f4e3c5
ad5c4e4
 
2f4e3c5
9de2c6f
5951713
9de2c6f
5951713
 
 
 
 
9de2c6f
5951713
 
 
 
 
 
 
 
9de2c6f
5951713
 
 
 
 
9de2c6f
2f4e3c5
 
5951713
 
 
 
 
2f4e3c5
9de2c6f
 
 
 
 
 
 
 
 
 
 
 
 
acb2b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5951713
 
 
2f4e3c5
 
 
 
5951713
2f4e3c5
5951713
 
2f4e3c5
 
5951713
2f4e3c5
 
 
 
ad5c4e4
 
 
2f4e3c5
 
ad5c4e4
 
5951713
 
 
 
ad5c4e4
5f57a53
5951713
1270bff
ad5c4e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
"""Boxes for defining PyTorch models."""

import copy
import enum
import graphlib
import types

import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
import dataclasses
from . import core

ENV = "PyTorch model"


def op(name, **kwargs):
    _op = ops.op(ENV, name, **kwargs)

    def decorator(func):
        _op(func)
        op = func.__op__
        for p in op.inputs.values():
            p.position = "bottom"
        for p in op.outputs.values():
            p.position = "top"
        return func

    return decorator


def reg(name, inputs=[], outputs=None, params=[]):
    if outputs is None:
        outputs = inputs
    return ops.register_passive_op(
        ENV,
        name,
        inputs=[ops.Input(name=name, position="bottom", type="tensor") for name in inputs],
        outputs=[ops.Output(name=name, position="top", type="tensor") for name in outputs],
        params=params,
    )


reg("Input: tensor", outputs=["x"], params=[P.basic("name")])
reg("Input: graph edges", outputs=["edges"])
reg("Input: sequential", outputs=["y"])

reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
    "Neural ODE",
    inputs=["x"],
    params=[
        P.basic("relative_tolerance"),
        P.basic("absolute_tolerance"),
        P.options(
            "method",
            [
                "dopri8",
                "dopri5",
                "bosh3",
                "fehlberg2",
                "adaptive_heun",
                "euler",
                "midpoint",
                "rk4",
                "explicit_adams",
                "implicit_adams",
            ],
        ),
    ],
)


reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])


@op("Linear")
def linear(x, *, output_dim="same"):
    if output_dim == "same":
        oshape = x.shape
    else:
        oshape = tuple(*x.shape[:-1], int(output_dim))
    return Layer(torch.nn.Linear(x.shape, oshape), shape=oshape)


class ActivationTypes(enum.Enum):
    ReLU = "ReLU"
    Leaky_ReLU = "Leaky ReLU"
    Tanh = "Tanh"
    Mish = "Mish"


@op("Activation")
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
    f = getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
    return Layer(f, shape=x.shape)


reg("Softmax", inputs=["x"])
reg(
    "Graph conv",
    inputs=["x", "edges"],
    outputs=["x"],
    params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
    "Optimizer",
    inputs=["loss"],
    outputs=[],
    params=[
        P.options(
            "type",
            [
                "AdamW",
                "Adafactor",
                "Adagrad",
                "SGD",
                "Lion",
                "Paged AdamW",
                "Galore AdamW",
            ],
        ),
        P.basic("lr", 0.001),
    ],
)

ops.register_passive_op(
    ENV,
    "Repeat",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[
        ops.Parameter.basic("times", 1, int),
        ops.Parameter.basic("same_weights", False, bool),
    ],
)

ops.register_passive_op(
    ENV,
    "Recurrent chain",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[],
)


def _to_id(*strings: str) -> str:
    """Replaces all non-alphanumeric characters with underscores."""
    return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)


@dataclasses.dataclass
class OpInput:
    """Ops get their inputs like this. They have to return a Layer made for this input."""

    id: str
    shape: tuple[int, ...]


@dataclasses.dataclass
class Layer:
    """Return this from an op. Must include a module and the shapes of the outputs."""

    module: torch.nn.Module
    shapes: list[tuple[int, ...]] | None = None  # One for each output.
    shape: dataclasses.InitVar[tuple[int, ...] | None] = None  # Convenience for single output.

    def __post_init__(self, shape):
        assert not self.shapes or not shape, "Cannot set both shapes and shape."
        if shape:
            self.shapes = [shape]


class ColumnSpec(pydantic.BaseModel):
    df: str
    column: str


class ModelMapping(pydantic.BaseModel):
    map: dict[str, ColumnSpec]


@dataclasses.dataclass
class ModelConfig:
    model: torch.nn.Module
    model_inputs: list[str]
    model_outputs: list[str]
    loss_inputs: list[str]
    loss: torch.nn.Module
    optimizer: torch.optim.Optimizer
    source_workspace: str | None = None
    trained: bool = False

    def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        model_inputs = [inputs[i] for i in self.model_inputs]
        output = self.model(*model_inputs)
        if not isinstance(output, tuple):
            output = (output,)
        values = {k: v for k, v in zip(self.model_outputs, output)}
        return values

    def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        # TODO: Do multiple batches.
        self.model.eval()
        return self._forward(inputs)

    def train(self, inputs: dict[str, torch.Tensor]) -> float:
        """Train the model for one epoch. Returns the loss."""
        # TODO: Do multiple batches.
        self.model.train()
        self.optimizer.zero_grad()
        values = self._forward(inputs)
        values.update(inputs)
        loss_inputs = [values[i] for i in self.loss_inputs]
        loss = self.loss(*loss_inputs)
        loss.backward()
        self.optimizer.step()
        return loss.item()

    def copy(self):
        """Returns a copy of the model."""
        c = dataclasses.replace(self)
        c.model = copy.deepcopy(self.model)
        return c

    def metadata(self):
        return {
            "type": "model",
            "model": {
                "inputs": self.model_inputs,
                "outputs": self.model_outputs,
                "loss_inputs": self.loss_inputs,
                "trained": self.trained,
            },
        }


def build_model(ws: workspace.Workspace, inputs: dict[str, torch.Tensor]) -> ModelConfig:
    """Builds the model described in the workspace."""
    catalog = ops.CATALOGS[ENV]
    optimizers = []
    nodes = {}
    for node in ws.nodes:
        nodes[node.id] = node
        if node.data.title == "Optimizer":
            optimizers.append(node.id)
    assert optimizers, "No optimizer found."
    assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
    [optimizer] = optimizers
    dependencies = {n.id: [] for n in ws.nodes}
    in_edges = {}
    out_edges = {}
    repeats = []
    for e in ws.edges:
        if nodes[e.target].data.title == "Repeat":
            repeats.append(e.target)
        dependencies[e.target].append(e.source)
        in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
            (e.source, e.sourceHandle)
        )
        out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
            (e.target, e.targetHandle)
        )
    # Split repeat boxes into start and end, and insert them into the flow.
    # TODO: Think about recursive repeats.
    for repeat in repeats:
        start_id = f"START {repeat}"
        end_id = f"END {repeat}"
        # repeat -> first <- real_input
        # ...becomes...
        # real_input -> start -> first
        first, firsth = out_edges[repeat]["output"][0]
        [(real_input, real_inputh)] = [
            k for k in in_edges[first][firsth] if k != (repeat, "output")
        ]
        dependencies[first].remove(repeat)
        dependencies[first].append(start_id)
        dependencies[start_id] = [real_input]
        out_edges[real_input][real_inputh] = [
            k if k != (first, firsth) else (start_id, "input")
            for k in out_edges[real_input][real_inputh]
        ]
        in_edges[start_id] = {"input": [(real_input, real_inputh)]}
        out_edges[start_id] = {"output": [(first, firsth)]}
        in_edges[first][firsth] = [(start_id, "output")]
        # repeat <- last -> real_output
        # ...becomes...
        # last -> end -> real_output
        last, lasth = in_edges[repeat]["input"][0]
        [(real_output, real_outputh)] = [
            k for k in out_edges[last][lasth] if k != (repeat, "input")
        ]
        del dependencies[repeat]
        dependencies[end_id] = [last]
        dependencies[real_output].append(end_id)
        out_edges[last][lasth] = [(end_id, "input")]
        in_edges[end_id] = {"input": [(last, lasth)]}
        out_edges[end_id] = {"output": [(real_output, real_outputh)]}
        in_edges[real_output][real_outputh] = [
            k if k != (last, lasth) else (end_id, "output")
            for k in in_edges[real_output][real_outputh]
        ]
    # Walk the graph in topological order.
    sizes = {}
    for k, i in inputs.items():
        sizes[k] = i.shape[-1]
    ts = graphlib.TopologicalSorter(dependencies)
    layers = []
    loss_layers = []
    regions: dict[str, set[str]] = {node_id: set() for node_id in dependencies}
    cfg = {}
    used_in_model = set()
    made_in_model = set()
    used_in_loss = set()
    made_in_loss = set()
    for node_id in ts.static_order():
        if node_id.startswith("START "):
            node = nodes[node_id.removeprefix("START ")]
        elif node_id.startswith("END "):
            node = nodes[node_id.removeprefix("END ")]
        else:
            node = nodes[node_id]
        t = node.data.title
        op = catalog[t]
        p = op.convert_params(node.data.params)
        for b in dependencies[node_id]:
            regions[node_id] |= regions[b]
        if "loss" in t:
            regions[node_id].add("loss")
        inputs = {}
        for n in in_edges.get(node_id, []):
            for b, h in in_edges[node_id][n]:
                i = _to_id(b, h)
                inputs[n] = i
                if "loss" in regions[node_id]:
                    used_in_loss.add(i)
                else:
                    used_in_model.add(i)
        outputs = {}
        for out in out_edges.get(node_id, []):
            i = _to_id(node_id, out)
            outputs[out] = i
            if inputs:  # Nodes with no inputs are input nodes. Their outputs are not "made" by us.
                if "loss" in regions[node_id]:
                    made_in_loss.add(i)
                else:
                    made_in_model.add(i)
        inputs = types.SimpleNamespace(**inputs)
        outputs = types.SimpleNamespace(**outputs)
        ls = loss_layers if "loss" in regions[node_id] else layers
        match t:
            case "MSE loss":
                ls.append(
                    (
                        torch.nn.functional.mse_loss,
                        f"{inputs.x}, {inputs.y} -> {outputs.loss}",
                    )
                )
            case "Repeat":
                ls.append((torch.nn.Identity(), f"{inputs.input} -> {outputs.output}"))
                sizes[outputs.output] = sizes.get(inputs.input, 1)
                if node_id.startswith("START "):
                    regions[node_id].add(("repeat", node_id.removeprefix("START ")))
                else:
                    repeat_id = node_id.removeprefix("END ")
                    print(f"repeat {repeat_id} ending")
                    regions[node_id].remove(("repeat", repeat_id))
                    for n in nodes:
                        r = regions.get(n, set())
                        if ("repeat", repeat_id) in r:
                            print(f"repeating {n}")
            case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
                pass
            case _:
                op_inputs = []
                for i in op.inputs.keys():
                    id = getattr(inputs, i)
                    op_inputs.append(OpInput(id, shape=sizes.get(id, 1)))
                if op.func != ops.no_op:
                    layer = op.func(*op_inputs, **p)
                else:
                    layer = Layer(torch.nn.Identity(), shapes=[i.shape for i in op_inputs])
                input_ids = ", ".join(i.id for i in op_inputs)
                output_ids = []
                for o, shape in zip(op.outputs.keys(), layer.shapes):
                    id = getattr(outputs, o)
                    output_ids.append(id)
                    sizes[id] = shape
                output_ids = ", ".join(output_ids)
                ls.append((layer.module, f"{input_ids} -> {output_ids}"))
    cfg["model_inputs"] = list(used_in_model - made_in_model)
    cfg["model_outputs"] = list(made_in_model & used_in_loss)
    cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
    # Make sure the trained output is output from the last model layer.
    outputs = ", ".join(cfg["model_outputs"])
    layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
    # Create model.
    cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers)
    # Make sure the loss is output from the last loss layer.
    [(lossb, lossh)] = in_edges[optimizer]["loss"]
    lossi = _to_id(lossb, lossh)
    loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
    # Create loss function.
    cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
    assert not list(cfg["loss"].parameters()), (
        f"loss should have no parameters: {list(cfg['loss'].parameters())}"
    )
    # Create optimizer.
    op = catalog["Optimizer"]
    p = op.convert_params(nodes[optimizer].data.params)
    o = getattr(torch.optim, p["type"].name)
    cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
    return ModelConfig(**cfg)


def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
    """Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
    if m is None:
        return {}
    tensors = {}
    for k, v in m.map.items():
        if v.df in b.dfs and v.column in b.dfs[v.df]:
            tensors[k] = torch.tensor(b.dfs[v.df][v.column].to_list(), dtype=torch.float32)
    return tensors