File size: 4,371 Bytes
c3b473d
 
 
 
 
 
 
 
 
 
 
 
aaf43fc
 
 
 
 
 
 
c3b473d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf43fc
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b473d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf43fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b473d
 
 
 
 
 
aaf43fc
c3b473d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf43fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""Boxes for defining PyTorch models."""

import enum
from lynxkite.core import ops
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric.nn as pyg_nn
from .core import op, reg, ENV

reg("Input: tensor", outputs=["output"], params=[P.basic("name")])
reg("Input: graph edges", outputs=["edges"])
reg("Input: sequential", outputs=["y"])
reg("Output", inputs=["x"], outputs=["x"], params=[P.basic("name")])


@op("LSTM")
def lstm(x, *, input_size=1024, hidden_size=1024, dropout=0.0):
    return torch.nn.LSTM(input_size, hidden_size, dropout=0.0)


reg(
    "Neural ODE",
    inputs=["x"],
    params=[
        P.basic("relative_tolerance"),
        P.basic("absolute_tolerance"),
        P.options(
            "method",
            [
                "dopri8",
                "dopri5",
                "bosh3",
                "fehlberg2",
                "adaptive_heun",
                "euler",
                "midpoint",
                "rk4",
                "explicit_adams",
                "implicit_adams",
            ],
        ),
    ],
)


@op("Attention", outputs=["outputs", "weights"])
def attention(query, key, value, *, embed_dim=1024, num_heads=1, dropout=0.0):
    return torch.nn.MultiHeadAttention(embed_dim, num_heads, dropout=dropout, need_weights=True)


@op("LayerNorm", outputs=["outputs", "weights"])
def layernorm(x, *, normalized_shape=""):
    normalized_shape = [int(s.strip()) for s in normalized_shape.split(",")]
    return torch.nn.LayerNorm(normalized_shape)


@op("Dropout", outputs=["outputs", "weights"])
def dropout(x, *, p=0.0):
    return torch.nn.Dropout(p)


@op("Linear")
def linear(x, *, output_dim=1024):
    return pyg_nn.Linear(-1, output_dim)


class ActivationTypes(enum.Enum):
    ReLU = "ReLU"
    Leaky_ReLU = "Leaky ReLU"
    Tanh = "Tanh"
    Mish = "Mish"


@op("Activation")
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
    return getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))


@op("MSE loss")
def mse_loss(x, y):
    return torch.nn.functional.mse_loss


@op("Constant vector")
def constant_vector(*, value=0, size=1):
    return lambda _: torch.full((size,), value)


@op("Softmax")
def softmax(x, *, dim=1):
    return torch.nn.Softmax(dim=dim)


@op("Concatenate")
def concatenate(a, b):
    return lambda a, b: torch.concatenate(*torch.broadcast_tensors(a, b))


reg(
    "Graph conv",
    inputs=["x", "edges"],
    outputs=["x"],
    params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)

reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
    "Optimizer",
    inputs=["loss"],
    outputs=[],
    params=[
        P.options(
            "type",
            [
                "AdamW",
                "Adafactor",
                "Adagrad",
                "SGD",
                "Lion",
                "Paged AdamW",
                "Galore AdamW",
            ],
        ),
        P.basic("lr", 0.001),
    ],
)

ops.register_passive_op(
    ENV,
    "Repeat",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[
        ops.Parameter.basic("times", 1, int),
        ops.Parameter.basic("same_weights", False, bool),
    ],
)

ops.register_passive_op(
    ENV,
    "Recurrent chain",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[],
)


def _set_handle_positions(op):
    op: ops.Op = op.__op__
    for v in op.outputs.values():
        v.position = "top"
    for v in op.inputs.values():
        v.position = "bottom"


def _register_simple_pytorch_layer(func):
    op = ops.op(ENV, func.__name__.title())(lambda input: func)
    _set_handle_positions(op)


def _register_two_tensor_function(func):
    op = ops.op(ENV, func.__name__.title())(lambda a, b: func)
    _set_handle_positions(op)


SIMPLE_FUNCTIONS = [
    torch.sin,
    torch.cos,
    torch.log,
    torch.exp,
]
TWO_TENSOR_FUNCTIONS = [
    torch.multiply,
    torch.add,
    torch.subtract,
]


for f in SIMPLE_FUNCTIONS:
    _register_simple_pytorch_layer(f)
for f in TWO_TENSOR_FUNCTIONS:
    _register_two_tensor_function(f)