File size: 7,292 Bytes
dc3ebef
 
6988728
 
a07e9cb
6988728
dc3ebef
 
 
a07e9cb
6988728
a07e9cb
dc3ebef
 
6988728
 
 
a07e9cb
 
dc3ebef
6988728
a07e9cb
 
6988728
a07e9cb
6988728
a07e9cb
 
 
e7fa7ee
dc3ebef
 
6988728
dc3ebef
6988728
 
dc3ebef
e7fa7ee
db436f7
dc3ebef
 
e7fa7ee
6988728
 
 
 
 
dc3ebef
e7fa7ee
 
dc3ebef
a07e9cb
 
e7fa7ee
a07e9cb
e7fa7ee
dc3ebef
a07e9cb
 
 
 
 
 
 
 
 
dc3ebef
e7fa7ee
a07e9cb
 
 
 
 
 
 
 
 
 
6988728
a07e9cb
 
dc3ebef
4524b65
 
 
e7fa7ee
a07e9cb
 
 
 
 
 
 
 
 
 
6988728
a07e9cb
 
 
6988728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07e9cb
 
 
 
 
 
 
 
 
6988728
a07e9cb
 
 
 
 
6988728
a07e9cb
 
6988728
a07e9cb
 
 
 
 
 
 
 
6988728
a07e9cb
6988728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07e9cb
 
 
 
 
 
 
6988728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
'''For specifying an LLM agent logic flow.'''
from . import ops
import chromadb
import fastapi.encoders
import inspect
import jinja2
import json
import openai
import pandas as pd
import traceback
import typing
from . import workspace

client = openai.OpenAI(base_url="http://localhost:11434/v1")
jinja = jinja2.Environment()
chroma_client = chromadb.Client()
LLM_CACHE = {}
ENV = 'LLM logic'
op = ops.op_registration(ENV)

class Context(ops.BaseConfig):
  '''Passed to operation functions as "_ctx" if they have such a parameter.'''
  node: workspace.WorkspaceNode
  last_result: typing.Any = None

class Output(ops.BaseConfig):
  '''Return this to send values to specific outputs of a node.'''
  output_handle: str
  value: dict

def chat(*args, **kwargs):
  key = json.dumps({'args': args, 'kwargs': kwargs})
  if key not in LLM_CACHE:
    completion = client.chat.completions.create(*args, **kwargs)
    LLM_CACHE[key] = [c.message.content for c in completion.choices]
  return LLM_CACHE[key]

@op("Input")
def input(*, filename: ops.PathStr, key: str):
  return pd.read_csv(filename).rename(columns={key: 'text'})

@op("Create prompt")
def create_prompt(input, *, save_as='prompt', template: ops.LongStr):
  assert template, 'Please specify the template. Refer to columns using the Jinja2 syntax.'
  t = jinja.from_string(template)
  prompt = t.render(**input)
  return {**input, save_as: prompt}

@op("Ask LLM")
def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int = 100):
  assert model, 'Please specify the model.'
  assert 'prompt' in input, 'Please create the prompt first.'
  options = {}
  if accepted_regex:
    options['extra_body'] = {
      "guided_regex": accepted_regex,
    }
  results = chat(
    model=model,
    max_tokens=max_tokens,
    messages=[
      {"role": "user", "content": input['prompt']},
    ],
    **options,
  )
  return [{**input, 'response': r} for r in results]

@op("View", view="table_view")
def view(input, *, _ctx: Context):
  v = _ctx.last_result
  if v:
    columns = v['dataframes']['df']['columns']
    v['dataframes']['df']['data'].append([input[c] for c in columns])
  else:
    columns = [str(c) for c in input.keys() if not str(c).startswith('_')]
    v = {
      'dataframes': { 'df': {
        'columns': columns,
        'data': [[input[c] for c in columns]],
      }}
    }
  return v

@ops.input_position(input="right")
@ops.output_position(output="left")
@op("Loop")
def loop(input, *, max_iterations: int = 3, _ctx: Context):
  '''Data can flow back here max_iterations-1 times.'''
  key = f'iterations-{_ctx.node.id}'
  input[key] = input.get(key, 0) + 1
  if input[key] < max_iterations:
    return input

@op('Branch', outputs=['true', 'false'])
def branch(input, *, expression: str):
  res = eval(expression, input)
  return Output(output_handle=str(bool(res)).lower(), value=input)

@ops.input_position(db="top")
@op('RAG')
def rag(input, db, *, input_field='text', db_field='text', num_matches: int=10, _ctx: Context):
  last = _ctx.last_result
  if last:
    collection = last['_collection']
  else:
    collection_name = _ctx.node.id.replace(' ', '_')
    for c in chroma_client.list_collections():
      if c.name == collection_name:
        chroma_client.delete_collection(name=collection_name)
    collection = chroma_client.create_collection(name=collection_name)
    collection.add(
      documents=[r[db_field] for r in db],
      ids=[str(i) for i in range(len(db))],
    )
  results = collection.query(
    query_texts=[input[input_field]],
    n_results=num_matches,
  )
  results = [db[int(r)] for r in results['ids'][0]]
  return {**input, 'rag': results, '_collection': collection}

@op('Run Python')
def run_python(input, *, template: str):
  assert template, 'Please specify the template. Refer to columns using their names in uppercase.'
  p = template
  for k, v in input.items():
    p = p.replace(k.upper(), str(v))
  return p

EXECUTOR_OUTPUT_CACHE = {}

@ops.register_executor(ENV)
def execute(ws):
  catalog = ops.CATALOGS[ENV]
  nodes = {n.id: n for n in ws.nodes}
  contexts = {n.id: Context(node=n) for n in ws.nodes}
  edges = {n.id: [] for n in ws.nodes}
  for e in ws.edges:
    edges[e.source].append(e)
  tasks = {}
  NO_INPUT = object() # Marker for initial tasks.
  for node in ws.nodes:
    node.data.error = None
    op = catalog[node.data.title]
    # Start tasks for nodes that have no inputs.
    if not op.inputs:
      tasks[node.id] = [NO_INPUT]
  batch_inputs = {}
  # Run the rest until we run out of tasks.
  for stage in get_stages(ws):
    next_stage = {}
    while tasks:
      n, ts = tasks.popitem()
      if n not in stage:
        next_stage.setdefault(n, []).extend(ts)
        continue
      node = nodes[n]
      data = node.data
      op = catalog[data.title]
      params = {**data.params}
      if has_ctx(op):
        params['_ctx'] = contexts[node.id]
      results = []
      for task in ts:
        try:
          inputs = [
            batch_inputs[(n, i.name)] if i.position == 'top' else task
            for i in op.inputs.values()]
          key = json.dumps(fastapi.encoders.jsonable_encoder((inputs, params)))
          if key not in EXECUTOR_OUTPUT_CACHE:
            EXECUTOR_OUTPUT_CACHE[key] = op.func(*inputs, **params)
          result = EXECUTOR_OUTPUT_CACHE[key]
        except Exception as e:
          traceback.print_exc()
          data.error = str(e)
          break
        contexts[node.id].last_result = result
        # Returned lists and DataFrames are considered multiple tasks.
        if isinstance(result, pd.DataFrame):
          result = df_to_list(result)
        elif not isinstance(result, list):
          result = [result]
        results.extend(result)
      else: # Finished all tasks without errors.
        if op.type == 'visualization' or op.type == 'table_view':
          data.display = results[0]
        for edge in edges[node.id]:
          t = nodes[edge.target]
          op = catalog[t.data.title]
          i = op.inputs[edge.targetHandle]
          if i.position == 'top':
            batch_inputs.setdefault((edge.target, edge.targetHandle), []).extend(results)
          else:
            tasks.setdefault(edge.target, []).extend(results)
    tasks = next_stage

def df_to_list(df):
  return [dict(zip(df.columns, row)) for row in df.values]

def has_ctx(op):
  sig = inspect.signature(op.func)
  return '_ctx' in sig.parameters

def get_stages(ws):
  '''Inputs on top are batch inputs. We decompose the graph into a DAG of components along these edges.'''
  catalog = ops.CATALOGS[ENV]
  nodes = {n.id: n for n in ws.nodes}
  batch_inputs = {}
  inputs = {}
  for edge in ws.edges:
    inputs.setdefault(edge.target, []).append(edge.source)
    node = nodes[edge.target]
    op = catalog[node.data.title]
    i = op.inputs[edge.targetHandle]
    if i.position == 'top':
      batch_inputs.setdefault(edge.target, []).append(edge.source)
  stages = []
  for bt, bss in batch_inputs.items():
    upstream = set(bss)
    new = set(bss)
    while new:
      n = new.pop()
      for i in inputs.get(n, []):
        if i not in upstream:
          upstream.add(i)
          new.add(i)
    stages.append(upstream)
  stages.sort(key=lambda s: len(s))
  stages.append(set(nodes))
  return stages