File size: 1,263 Bytes
3010d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
'''Boxes for defining and using PyTorch models.'''
import inspect
from . import ops

LAYERS = {}

@ops.op("Define PyTorch model", sub_nodes=LAYERS)
def define_pytorch_model(*, sub_flow):
  # import torch # Lazy import because it's slow.
  print('sub_flow:', sub_flow)
  return 'hello ' + str(sub_flow)

def register_layer(name):
  def decorator(func):
    sig = inspect.signature(func)
    inputs = {
      name: param.annotation
      for name, param in sig.parameters.items()
      if param.kind != param.KEYWORD_ONLY}
    params = {
      name: param.default if param.default is not inspect._empty else None
      for name, param in sig.parameters.items()
      if param.kind == param.KEYWORD_ONLY}
    outputs = {'x': 'tensor'}
    LAYERS[name] = ops.Op(func, name, params=params, inputs=inputs, outputs=outputs, type='vertical')
    return func
  return decorator

@register_layer('LayerNorm')
def normalization():
  return 'LayerNorm'

@register_layer('Dropout')
def dropout(*, p=0.5):
  return f'Dropout ({p})'

@register_layer('Linear')
def linear(*, output_dim: int):
  return f'Linear {output_dim}'

@register_layer('Graph Convolution')
def graph_convolution():
  return 'GraphConv'

@register_layer('Nonlinearity')
def nonlinearity():
  return 'ReLU'