Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,133 +5,84 @@ import os
|
|
5 |
from pydub import AudioSegment
|
6 |
import tempfile
|
7 |
from speechbrain.pretrained.separation import SepformerSeparation
|
8 |
-
import numpy as np
|
9 |
-
import threading
|
10 |
-
from queue import Queue
|
11 |
-
import time
|
12 |
|
13 |
-
class
|
14 |
def __init__(self):
|
15 |
-
# Initialize the model
|
16 |
self.model = SepformerSeparation.from_hparams(
|
17 |
source="speechbrain/sepformer-dns4-16k-enhancement",
|
18 |
savedir='pretrained_models/sepformer-dns4-16k-enhancement'
|
19 |
)
|
20 |
|
21 |
-
#
|
22 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
-
self.model.to(self.device)
|
24 |
-
|
25 |
-
# Enable inference mode for better performance
|
26 |
-
self.model.eval()
|
27 |
-
torch.set_grad_enabled(False)
|
28 |
-
|
29 |
-
# Set chunk size for streaming (500ms chunks)
|
30 |
-
self.chunk_duration = 0.5 # seconds
|
31 |
-
self.sample_rate = 16000
|
32 |
-
self.chunk_size = int(self.sample_rate * self.chunk_duration)
|
33 |
-
|
34 |
-
# Initialize processing queue and buffer
|
35 |
-
self.processing_queue = Queue()
|
36 |
-
self.output_buffer = Queue()
|
37 |
-
self.is_processing = False
|
38 |
-
|
39 |
-
# Start processing thread
|
40 |
-
self.processing_thread = threading.Thread(target=self._process_queue)
|
41 |
-
self.processing_thread.daemon = True
|
42 |
-
self.processing_thread.start()
|
43 |
-
|
44 |
-
# Create output directory
|
45 |
os.makedirs("enhanced_audio", exist_ok=True)
|
46 |
-
|
47 |
-
def
|
48 |
-
"""
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
"""Background thread for processing audio chunks"""
|
58 |
-
while True:
|
59 |
-
if not self.processing_queue.empty():
|
60 |
-
chunk = self.processing_queue.get()
|
61 |
-
if chunk is None:
|
62 |
-
continue
|
63 |
-
|
64 |
-
# Process audio chunk
|
65 |
-
enhanced_chunk = self._enhance_chunk(chunk)
|
66 |
-
self.output_buffer.put(enhanced_chunk)
|
67 |
-
else:
|
68 |
-
time.sleep(0.01) # Small delay to prevent CPU overuse
|
69 |
-
|
70 |
-
def _enhance_chunk(self, audio_chunk):
|
71 |
-
"""Process a single chunk of audio"""
|
72 |
try:
|
73 |
-
#
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
return
|
83 |
|
84 |
except Exception as e:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
def process_stream(self, audio_path):
|
89 |
"""
|
90 |
-
Process audio
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
"""
|
92 |
try:
|
93 |
-
# Convert input audio to proper format
|
94 |
-
|
95 |
-
audio = audio.set_frame_rate(self.sample_rate)
|
96 |
-
audio = audio.set_channels(1)
|
97 |
-
|
98 |
-
# Convert to numpy array
|
99 |
-
samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
|
100 |
-
samples = samples / np.max(np.abs(samples)) # Normalize
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
-
for i in range(0, len(samples), self.chunk_size):
|
105 |
-
chunk = samples[i:i + self.chunk_size]
|
106 |
-
|
107 |
-
# Pad last chunk if necessary
|
108 |
-
if len(chunk) < self.chunk_size:
|
109 |
-
chunk = np.pad(chunk, (0, self.chunk_size - len(chunk)))
|
110 |
-
|
111 |
-
# Add to processing queue
|
112 |
-
self.processing_queue.put(chunk)
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
-
if not self.output_buffer.empty():
|
117 |
-
enhanced_chunks.append(self.output_buffer.get())
|
118 |
-
time.sleep(0.01)
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
enhanced_audio = enhanced_audio.astype(np.int16)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
f.name,
|
131 |
-
torch.tensor(enhanced_audio).unsqueeze(0),
|
132 |
-
self.sample_rate
|
133 |
-
)
|
134 |
-
os.replace(f.name, output_path)
|
135 |
|
136 |
return output_path
|
137 |
|
@@ -140,11 +91,11 @@ class RealtimeAudioDenoiser:
|
|
140 |
|
141 |
def create_gradio_interface():
|
142 |
# Initialize the denoiser
|
143 |
-
denoiser =
|
144 |
|
145 |
# Create the Gradio interface
|
146 |
interface = gr.Interface(
|
147 |
-
fn=denoiser.
|
148 |
inputs=gr.Audio(
|
149 |
type="filepath",
|
150 |
label="Upload Noisy Audio"
|
@@ -153,10 +104,21 @@ def create_gradio_interface():
|
|
153 |
label="Enhanced Audio",
|
154 |
type="filepath"
|
155 |
),
|
156 |
-
title="
|
157 |
description="""
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
"""
|
161 |
)
|
162 |
|
|
|
5 |
from pydub import AudioSegment
|
6 |
import tempfile
|
7 |
from speechbrain.pretrained.separation import SepformerSeparation
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
class AudioDenoiser:
|
10 |
def __init__(self):
|
11 |
+
# Initialize the SepFormer model for audio enhancement
|
12 |
self.model = SepformerSeparation.from_hparams(
|
13 |
source="speechbrain/sepformer-dns4-16k-enhancement",
|
14 |
savedir='pretrained_models/sepformer-dns4-16k-enhancement'
|
15 |
)
|
16 |
|
17 |
+
# Create output directory if it doesn't exist
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
os.makedirs("enhanced_audio", exist_ok=True)
|
19 |
+
|
20 |
+
def convert_audio_to_wav(self, input_path):
|
21 |
+
"""
|
22 |
+
Convert any audio format to WAV with proper settings
|
23 |
+
|
24 |
+
Args:
|
25 |
+
input_path (str): Path to input audio file
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
str: Path to converted WAV file
|
29 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
try:
|
31 |
+
# Create a temporary file for the converted audio
|
32 |
+
temp_wav = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
|
33 |
+
temp_wav_path = temp_wav.name
|
34 |
+
|
35 |
+
# Load audio using pydub (supports multiple formats)
|
36 |
+
audio = AudioSegment.from_file(input_path)
|
37 |
+
|
38 |
+
# Convert to mono if stereo
|
39 |
+
if audio.channels > 1:
|
40 |
+
audio = audio.set_channels(1)
|
41 |
|
42 |
+
# Export as WAV with proper settings
|
43 |
+
audio.export(
|
44 |
+
temp_wav_path,
|
45 |
+
format='wav',
|
46 |
+
parameters=[
|
47 |
+
'-ar', '16000', # Set sample rate to 16kHz
|
48 |
+
'-ac', '1' # Set channels to mono
|
49 |
+
]
|
50 |
+
)
|
51 |
|
52 |
+
return temp_wav_path
|
53 |
|
54 |
except Exception as e:
|
55 |
+
raise gr.Error(f"Error converting audio format: {str(e)}")
|
56 |
+
|
57 |
+
def enhance_audio(self, audio_path):
|
|
|
58 |
"""
|
59 |
+
Process the input audio file and return the enhanced version
|
60 |
+
|
61 |
+
Args:
|
62 |
+
audio_path (str): Path to the input audio file
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
str: Path to the enhanced audio file
|
66 |
"""
|
67 |
try:
|
68 |
+
# Convert input audio to proper WAV format
|
69 |
+
wav_path = self.convert_audio_to_wav(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Separate and enhance the audio
|
72 |
+
est_sources = self.model.separate_file(path=wav_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Generate output filename
|
75 |
+
output_path = os.path.join("enhanced_audio", "enhanced_audio.wav")
|
|
|
|
|
|
|
76 |
|
77 |
+
# Save the enhanced audio
|
78 |
+
torchaudio.save(
|
79 |
+
output_path,
|
80 |
+
est_sources[:, :, 0].detach().cpu(),
|
81 |
+
16000 # Sample rate
|
82 |
+
)
|
|
|
83 |
|
84 |
+
# Clean up temporary file
|
85 |
+
os.unlink(wav_path)
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
return output_path
|
88 |
|
|
|
91 |
|
92 |
def create_gradio_interface():
|
93 |
# Initialize the denoiser
|
94 |
+
denoiser = AudioDenoiser()
|
95 |
|
96 |
# Create the Gradio interface
|
97 |
interface = gr.Interface(
|
98 |
+
fn=denoiser.enhance_audio,
|
99 |
inputs=gr.Audio(
|
100 |
type="filepath",
|
101 |
label="Upload Noisy Audio"
|
|
|
104 |
label="Enhanced Audio",
|
105 |
type="filepath"
|
106 |
),
|
107 |
+
title="Audio Denoising using SepFormer",
|
108 |
description="""
|
109 |
+
This application uses the SepFormer model from SpeechBrain to enhance audio quality
|
110 |
+
by removing background noise. Supports various audio formats including MP3 and WAV.
|
111 |
+
""",
|
112 |
+
article="""
|
113 |
+
Supported audio formats:
|
114 |
+
- MP3
|
115 |
+
- WAV
|
116 |
+
- OGG
|
117 |
+
- FLAC
|
118 |
+
- M4A
|
119 |
+
and more...
|
120 |
+
|
121 |
+
The audio will automatically be converted to the correct format for processing.
|
122 |
"""
|
123 |
)
|
124 |
|