Spaces:
Runtime error
Runtime error
Cleanup and gc after training
Browse files
main.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import argparse
|
| 3 |
import random
|
| 4 |
import torch
|
|
@@ -44,6 +45,10 @@ def reset_model():
|
|
| 44 |
del model
|
| 45 |
del tokenizer
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
model = None
|
| 48 |
tokenizer = None
|
| 49 |
current_peft_model = None
|
|
@@ -95,11 +100,12 @@ def generate_text(
|
|
| 95 |
num_beams=1,
|
| 96 |
)
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
return tokenizer.decode(output, skip_special_tokens=True).strip()
|
| 105 |
|
|
@@ -238,6 +244,8 @@ def tokenize_and_train(
|
|
| 238 |
|
| 239 |
result = trainer.train(resume_from_checkpoint=False)
|
| 240 |
model.save_pretrained(output_dir)
|
|
|
|
|
|
|
| 241 |
reset_model()
|
| 242 |
|
| 243 |
return result
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gc
|
| 3 |
import argparse
|
| 4 |
import random
|
| 5 |
import torch
|
|
|
|
| 45 |
del model
|
| 46 |
del tokenizer
|
| 47 |
|
| 48 |
+
gc.collect()
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
torch.cuda.empty_cache()
|
| 51 |
+
|
| 52 |
model = None
|
| 53 |
tokenizer = None
|
| 54 |
current_peft_model = None
|
|
|
|
| 100 |
num_beams=1,
|
| 101 |
)
|
| 102 |
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
output = model.generate( # type: ignore
|
| 105 |
+
input_ids=input_ids,
|
| 106 |
+
attention_mask=torch.ones_like(input_ids),
|
| 107 |
+
generation_config=generation_config
|
| 108 |
+
)[0].cuda()
|
| 109 |
|
| 110 |
return tokenizer.decode(output, skip_special_tokens=True).strip()
|
| 111 |
|
|
|
|
| 244 |
|
| 245 |
result = trainer.train(resume_from_checkpoint=False)
|
| 246 |
model.save_pretrained(output_dir)
|
| 247 |
+
|
| 248 |
+
del data
|
| 249 |
reset_model()
|
| 250 |
|
| 251 |
return result
|