|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
client = InferenceClient("lambdaindie/lambdai") |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
|
|
for user, assistant in history: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
response = "" |
|
|
|
for chunk in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🧠 lambdai — Chat Demo") |
|
|
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
system_msg = gr.Textbox(label="System message", placeholder="e.g. You are a helpful assistant.") |
|
with gr.Row(): |
|
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max tokens") |
|
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") |
|
msg = gr.Textbox(placeholder="Ask something...", label="Your message") |
|
|
|
state = gr.State([]) |
|
|
|
def user_submit(user_message, history): |
|
return "", history + [[user_message, None]] |
|
|
|
def generate_response(message, history, sys_msg, max_tokens, temperature, top_p): |
|
gen = respond(message, history, sys_msg, max_tokens, temperature, top_p) |
|
return gen, history |
|
|
|
msg.submit(user_submit, [msg, state], [msg, state], queue=False).then( |
|
generate_response, |
|
[msg, state, system_msg, max_tokens, temperature, top_p], |
|
[chatbot, state] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |