File size: 3,236 Bytes
eb450e3
 
7515381
eb450e3
09742af
eb450e3
fa8b0f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162ed73
 
eb450e3
162ed73
 
 
 
 
eb450e3
162ed73
 
 
 
 
 
09742af
162ed73
fa8b0f1
eb450e3
162ed73
 
09742af
eb450e3
 
 
 
162ed73
 
fa8b0f1
 
162ed73
fa8b0f1
eb450e3
162ed73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09742af
 
fa8b0f1
162ed73
fa8b0f1
 
09742af
162ed73
 
 
09742af
162ed73
 
 
 
09742af
eb450e3
 
91e7ac0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
from huggingface_hub import InferenceClient
import time

client = InferenceClient("lambdaindie/lambdai")

css = """
body {
    background-color: #111;
    color: #e0e0e0;
    font-family: 'JetBrains Mono', monospace;
}
.gr-button {
    background: linear-gradient(to right, #2a2a2a, #1f1f1f);
    color: white;
    border-radius: 10px;
    padding: 8px 16px;
    font-weight: bold;
    font-family: 'JetBrains Mono', monospace;
}
.gr-button:hover {
    background: #333;
}
.gr-textbox textarea {
    background-color: #181818 !important;
    color: #fff !important;
    font-family: 'JetBrains Mono', monospace;
    border-radius: 8px;
}
.gr-chat-message {
    font-family: 'JetBrains Mono', monospace;
}
.markdown-think {
    background-color: #1e1e1e;
    border-left: 4px solid #555;
    padding: 10px;
    margin-bottom: 8px;
    font-style: italic;
    white-space: pre-wrap;
    font-family: 'JetBrains Mono', monospace;
    animation: pulse 1.5s infinite ease-in-out;
}
@keyframes pulse {
    0% { opacity: 0.6; }
    50% { opacity: 1.0; }
    100% { opacity: 0.6; }
}
"""

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}] if system_message else []

    for user, assistant in history:
        if user:
            messages.append({"role": "user", "content": user})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    thinking_prompt = messages + [
        {
            "role": "user",
            "content": f"{message}\n\nThink step-by-step before answering."
        }
    ]

    reasoning = ""
    yield '<div class="markdown-think">Thinking...</div>'

    for chunk in client.chat_completion(
        thinking_prompt,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        reasoning += token
        styled_thought = f'<div class="markdown-think">{reasoning.strip()}</div>'
        yield styled_thought

    time.sleep(0.5)

    final_prompt = messages + [
        {"role": "user", "content": message},
        {"role": "assistant", "content": reasoning.strip()},
        {"role": "user", "content": "Now answer based on your reasoning above."}
    ]

    final_answer = ""
    for chunk in client.chat_completion(
        final_prompt,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        final_answer += token
        yield final_answer.strip()

demo = gr.ChatInterface(
    fn=respond,
    title="LENIRΛ",
    theme=gr.themes.Base(primary_hue="gray"),
    css=css,
    additional_inputs=[
        gr.Textbox(
            value="You are a concise, logical AI that explains its reasoning clearly before answering.",
            label="System Message"
        ),
        gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
        gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
    ]
)

if __name__ == "__main__":
    demo.launch()