File size: 3,476 Bytes
eb450e3
 
582395b
eb450e3
e5afc30
b51f88d
 
eb450e3
e5afc30
b51f88d
582395b
b51f88d
45634ef
582395b
 
b51f88d
 
 
 
 
 
582395b
45634ef
582395b
 
45634ef
582395b
 
e3c453c
3cfecb5
582395b
 
 
fa8b0f1
 
 
582395b
 
 
 
 
 
 
 
 
b51f88d
 
 
582395b
 
45634ef
6e60b60
b51f88d
582395b
 
 
 
 
 
 
 
b51f88d
eb450e3
da0a172
 
 
 
 
 
 
 
 
b51f88d
da0a172
 
 
 
 
 
 
 
 
 
b51f88d
 
 
e5afc30
 
b51f88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb450e3
582395b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from huggingface_hub import InferenceClient
import time

# Clientes
chat_client = InferenceClient("lambdaindie/lambdai")
image_client = InferenceClient("stabilityai/stable-diffusion-2")

# CSS com JetBrains Mono forçado
css = """
body {
    font-family: 'JetBrains Mono', monospace;
    background-color: #111;
    color: #e0e0e0;
}
.gr-textbox textarea {
    background-color: #181818 !important;
    color: #fff !important;
    font-family: 'JetBrains Mono', monospace;
    border-radius: 8px;
}
.markdown-think {
    background-color: #1e1e1e;
    border-left: 4px solid #555;
    padding: 10px;
    margin-bottom: 8px;
    font-style: italic;
    animation: pulse 1.5s infinite ease-in-out;
}
@keyframes pulse {
    0% { opacity: 0.6; }
    50% { opacity: 1.0; }
    100% { opacity: 0.6; }
}
"""

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}] if system_message else []

    for user, assistant in history:
        if user:
            messages.append({"role": "user", "content": user})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    thinking_prompt = messages + [
        {"role": "user", "content": f"{message}\n\nThink step-by-step before answering."}
    ]

    reasoning = ""
    yield '<div class="markdown-think">Thinking...</div>'

    for chunk in chat_client.chat_completion(
        thinking_prompt,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        reasoning += token
        yield f'<div class="markdown-think">{reasoning.strip()}</div>'

    time.sleep(0.5)

    final_prompt = messages + [
        {"role": "user", "content": message},
        {"role": "assistant", "content": reasoning.strip()},
        {"role": "user", "content": "Now answer based on your reasoning above."}
    ]

    final_answer = ""
    for chunk in chat_client.chat_completion(
        final_prompt,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        final_answer += token
        yield final_answer.strip()

def generate_image(prompt):
    return image_client.text_to_image(prompt, guidance_scale=7.5)

# Interface
with gr.Blocks(css=css) as demo:
    gr.Markdown("# λmabdAI")

    with gr.Tabs():
        with gr.Tab("Chat"):
            gr.ChatInterface(
                fn=respond,
                additional_inputs=[
                    gr.Textbox(
                        value="You are a concise, logical AI that explains its reasoning clearly before answering.",
                        label="System Message"
                    ),
                    gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
                    gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
                    gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
                ]
            )

        with gr.Tab("Image Generator"):
            gr.Markdown("### Generate an image from a prompt")
            prompt = gr.Textbox(label="Prompt")
            output = gr.Image(type="pil")
            btn = gr.Button("Generate")
            btn.click(fn=generate_image, inputs=prompt, outputs=output)

if __name__ == "__main__":
    demo.launch()