lamb / app.py
mariusjabami's picture
Update app.py
a3382ae verified
raw
history blame
1.02 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Carrega tokenizer e modelo manualmente
tokenizer = AutoTokenizer.from_pretrained("lambdaindie/lambda-1v-1B")
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambda-1v-1B")
# Garante uso de CPU
device = torch.device("cpu")
model.to(device)
# Função de geração
def responder(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_new_tokens=50,
do_sample=True,
top_p=0.95,
temperature=0.8,
pad_token_id=tokenizer.eos_token_id # evita warning se for causal
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Interface Gradio
iface = gr.Interface(
fn=responder,
inputs=gr.Textbox(lines=2, placeholder="Escreve algo..."),
outputs="text",
title="Lambda-1v-1B",
description="Modelo local de geração de texto criado por Marius Jabami.",
)
iface.launch()