Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import zipfile
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import mindspore
|
| 7 |
+
import mindspore.nn as nn
|
| 8 |
+
import mindspore.numpy as mnp
|
| 9 |
+
import mindspore.ops as ops
|
| 10 |
+
import mindspore.dataset as dataset
|
| 11 |
+
from mindspore import Tensor
|
| 12 |
+
from mindspore import load_checkpoint, load_param_into_net
|
| 13 |
+
from mindspore.common.initializer import Uniform, HeUniform
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def load_glove():
|
| 17 |
+
embeddings = []
|
| 18 |
+
tokens = []
|
| 19 |
+
with open("./lstm/glove.6B.100d.txt", encoding='utf-8') as gf:
|
| 20 |
+
for glove in gf:
|
| 21 |
+
word, embedding = glove.split(maxsplit=1)
|
| 22 |
+
tokens.append(word)
|
| 23 |
+
embeddings.append(np.fromstring(embedding, dtype=np.float32, sep=' '))
|
| 24 |
+
# 添加 <unk>, <pad> 两个特殊占位符对应的embedding
|
| 25 |
+
embeddings.append(np.random.rand(100))
|
| 26 |
+
embeddings.append(np.zeros((100,), np.float32))
|
| 27 |
+
|
| 28 |
+
vocab = dataset.text.Vocab.from_list(tokens, special_tokens=["<unk>", "<pad>"], special_first=False)
|
| 29 |
+
embeddings = np.array(embeddings).astype(np.float32)
|
| 30 |
+
return vocab, embeddings
|
| 31 |
+
|
| 32 |
+
class RNN(nn.Cell):
|
| 33 |
+
def __init__(self, embeddings, hidden_dim, output_dim, n_layers,
|
| 34 |
+
bidirectional, dropout, pad_idx):
|
| 35 |
+
super().__init__()
|
| 36 |
+
vocab_size, embedding_dim = embeddings.shape
|
| 37 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim, embedding_table=Tensor(embeddings), padding_idx=pad_idx)
|
| 38 |
+
self.rnn = nn.LSTM(embedding_dim,
|
| 39 |
+
hidden_dim,
|
| 40 |
+
num_layers=n_layers,
|
| 41 |
+
bidirectional=bidirectional,
|
| 42 |
+
dropout=dropout,
|
| 43 |
+
batch_first=True)
|
| 44 |
+
weight_init = HeUniform(math.sqrt(5))
|
| 45 |
+
bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))
|
| 46 |
+
self.fc = nn.Dense(hidden_dim * 2, output_dim, weight_init=weight_init, bias_init=bias_init)
|
| 47 |
+
self.dropout = nn.Dropout(1 - dropout)
|
| 48 |
+
self.sigmoid = ops.Sigmoid()
|
| 49 |
+
|
| 50 |
+
def construct(self, inputs):
|
| 51 |
+
embedded = self.dropout(self.embedding(inputs))
|
| 52 |
+
_, (hidden, _) = self.rnn(embedded)
|
| 53 |
+
hidden = self.dropout(mnp.concatenate((hidden[-2, :, :], hidden[-1, :, :]), axis=1))
|
| 54 |
+
output = self.fc(hidden)
|
| 55 |
+
return self.sigmoid(output)
|
| 56 |
+
|
| 57 |
+
score_map = {
|
| 58 |
+
1: "Positive",
|
| 59 |
+
0: "Negative"
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
def predict_sentiment(model, vocab, sentence):
|
| 63 |
+
model.set_train(False)
|
| 64 |
+
tokenized = sentence.lower().split()
|
| 65 |
+
indexed = vocab.tokens_to_ids(tokenized)
|
| 66 |
+
tensor = mindspore.Tensor(indexed, mindspore.int32)
|
| 67 |
+
tensor = tensor.expand_dims(0)
|
| 68 |
+
prediction = model(tensor)
|
| 69 |
+
return prediction.asnumpy()
|
| 70 |
+
|
| 71 |
+
def prefict_emotion(sentence):
|
| 72 |
+
# 加载网路
|
| 73 |
+
hidden_size = 256
|
| 74 |
+
output_size = 1
|
| 75 |
+
num_layers = 2
|
| 76 |
+
bidirectional = True
|
| 77 |
+
dropout = 0.5
|
| 78 |
+
lr = 0.00
|
| 79 |
+
|
| 80 |
+
vocab, embeddings = load_glove()
|
| 81 |
+
pad_idx = vocab.tokens_to_ids('<pad>')
|
| 82 |
+
net = RNN(embeddings, hidden_size, output_size, num_layers, bidirectional, dropout, pad_idx)
|
| 83 |
+
|
| 84 |
+
# 将模型参数存入parameter的字典中
|
| 85 |
+
param_dict = load_checkpoint("./lstm/sentiment-analysis.ckpt")
|
| 86 |
+
|
| 87 |
+
# 将参数加载到网络中
|
| 88 |
+
load_param_into_net(net, param_dict)
|
| 89 |
+
model = Model(net)
|
| 90 |
+
|
| 91 |
+
# 预测
|
| 92 |
+
pred = predict_sentiment(model, vocab, sentence)
|
| 93 |
+
result = {
|
| 94 |
+
"Positive 🙂": pred,
|
| 95 |
+
"Negative 🙃": 1-pred,
|
| 96 |
+
}
|
| 97 |
+
return result
|
| 98 |
+
|
| 99 |
+
gr.Interface(
|
| 100 |
+
fn=prefict_emotion,
|
| 101 |
+
inputs=gr.inputs.Textbox(
|
| 102 |
+
lines=3,
|
| 103 |
+
placeholder="Type a phrase that has some emotion",
|
| 104 |
+
label="Input Text",
|
| 105 |
+
),
|
| 106 |
+
outputs="label",
|
| 107 |
+
title="Sentiment Analysis",
|
| 108 |
+
examples=[
|
| 109 |
+
"This film is terrible",
|
| 110 |
+
"This film is great",
|
| 111 |
+
],
|
| 112 |
+
).launch(share=True)
|