File size: 8,625 Bytes
fa53be0
 
 
 
 
 
d9564dd
fa53be0
 
 
 
d9564dd
fa53be0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session
import json
import random
import os
import string
from flask_session import Session

app = Flask(__name__)
app.config['SECRET_KEY'] = 'supersecretkey'  # Change this to a random secret key
app.config['SESSION_TYPE'] = 'filesystem'
Session(app)

# Directories for visualizations
VISUALIZATION_DIRS_PLAN_OF_SQLS = {
    "TP": "visualizations/TP",
    "TN": "visualizations/TN",
    "FP": "visualizations/FP",
    "FN": "visualizations/FN"
}

VISUALIZATION_DIRS_CHAIN_OF_TABLE = {
    "TP": "htmls_COT/TP",
    "TN": "htmls_COT/TN",
    "FP": "htmls_COT/FP",
    "FN": "htmls_COT/FN"
}


# Load all sample files from the directories based on the selected method
def load_samples(method):
    if method == "Chain-of-Table":
        visualization_dirs = VISUALIZATION_DIRS_CHAIN_OF_TABLE
    else:
        visualization_dirs = VISUALIZATION_DIRS_PLAN_OF_SQLS

    samples = {"TP": [], "TN": [], "FP": [], "FN": []}
    for category, dir_path in visualization_dirs.items():
        for filename in os.listdir(dir_path):
            if filename.endswith(".html"):
                samples[category].append(filename)
    return samples


# Randomly select balanced samples
def select_balanced_samples(samples):
    tp_fp_samples = random.sample(samples["TP"] + samples["FP"], 5)
    tn_fn_samples = random.sample(samples["TN"] + samples["FN"], 5)
    return tp_fp_samples + tn_fn_samples


def generate_random_string(length=8):
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))


@app.route('/', methods=['GET', 'POST'])
def index():
    if request.method == 'POST':
        username = request.form.get('username')
        seed = request.form.get('seed')
        method = request.form.get('method')

        if not username or not seed or not method:
            return "Missing username, seed, or method", 400

        seed = int(seed)
        random.seed(seed)
        all_samples = load_samples(method)
        selected_samples = select_balanced_samples(all_samples)
        random_string = generate_random_string()
        filename = f'{username}_{seed}_{method}_{random_string}.json'  # Append method to filename

        session['selected_samples'] = selected_samples
        session['responses'] = []  # Initialize responses list
        session['method'] = method  # Store the selected method

        return redirect(url_for('experiment', username=username, sample_index=0, seed=seed, filename=filename))
    return render_template('index.html')


@app.route('/experiment/<username>/<sample_index>/<seed>/<filename>', methods=['GET'])
def experiment(username, sample_index, seed, filename):
    sample_index = int(sample_index)
    selected_samples = session.get('selected_samples', [])
    method = session.get('method')  # Retrieve the selected method

    if sample_index >= len(selected_samples):
        return redirect(url_for('completed', filename=filename))

    visualization_file = selected_samples[sample_index]
    visualization_path = None

    # Determine the correct visualization directory based on the method
    if method == "Chain-of-Table":
        visualization_dirs = VISUALIZATION_DIRS_CHAIN_OF_TABLE
    else:
        visualization_dirs = VISUALIZATION_DIRS_PLAN_OF_SQLS

    # Find the correct visualization path
    for category, dir_path in visualization_dirs.items():
        if visualization_file in os.listdir(dir_path):
            visualization_path = f"{category}/{visualization_file}"
            break

    if not visualization_path:
        return "Visualization file not found", 404

    statement = "Please make a decision to Accept/Reject the AI prediction based on the explanation."
    return render_template('experiment.html',
                           sample_id=sample_index,
                           statement=statement,
                           visualization=visualization_path,
                           username=username,
                           seed=seed,
                           sample_index=sample_index,
                           filename=filename)

@app.route('/visualizations/<path:path>')
def send_visualization(path):
    # Determine which visualization folder to use based on the selected method
    method = session.get('method')
    if method == "Chain-of-Table":
        visualization_dir = 'htmls_COT'
    else:  # Default to Plan-of-SQLs
        visualization_dir = 'visualizations'

    # Serve the file from the appropriate directory
    return send_from_directory(visualization_dir, path)


@app.route('/feedback', methods=['POST'])
def feedback():
    sample_id = request.form['sample_id']
    feedback = request.form['feedback']
    username = request.form['username']
    seed = request.form['seed']
    sample_index = int(request.form['sample_index'])
    filename = request.form['filename']

    selected_samples = session.get('selected_samples', [])
    responses = session.get('responses', [])

    # Store the feedback
    responses.append({
        'sample_id': sample_id,
        'feedback': feedback
    })
    session['responses'] = responses

    # Create the result directory if it doesn't exist
    result_dir = 'human_study'
    os.makedirs(result_dir, exist_ok=True)

    # Load existing data if the JSON file exists
    filepath = os.path.join(result_dir, filename)
    if os.path.exists(filepath):
        with open(filepath, 'r') as f:
            data = json.load(f)
    else:
        data = {}

    # Update data with the current feedback
    data[sample_index] = {
        'Username': username,
        'Seed': seed,
        'Sample ID': sample_id,
        'Task': f"Please make a decision to Accept/Reject the AI prediction based on the explanation.",
        'User Feedback': feedback
    }

    # Save updated data to the file
    with open(filepath, 'w') as f:
        json.dump(data, f, indent=4)

    next_sample_index = sample_index + 1
    if next_sample_index >= len(selected_samples):
        return redirect(url_for('completed', filename=filename))

    return redirect(
        url_for('experiment', username=username, sample_index=next_sample_index, seed=seed, filename=filename))

@app.route('/completed/<filename>')
def completed(filename):
    # Load responses from the session
    responses = session.get('responses', [])

    # Determine which JSON file to load based on the method
    method = session.get('method')
    if method == "Chain-of-Table":
        json_file = 'Tabular_LLMs_human_study_vis_6_COT.json'
    else:  # Default to Plan-of-SQLs
        json_file = 'Tabular_LLMs_human_study_vis_6.json'

    # Load the ground truth data from the appropriate JSON file
    with open(json_file, 'r') as f:
        ground_truth = json.load(f)

    # Initialize counters
    correct_responses = 0
    accept_count = 0
    reject_count = 0

    for response in responses:
        sample_id = response['sample_id']
        feedback = response['feedback']
        index = sample_id.split('-')[1].split('.')[0]  # Extract index from filename

        # Count the feedback
        if feedback.upper() == "TRUE":
            accept_count += 1
        elif feedback.upper() == "FALSE":
            reject_count += 1

        # Construct the ground truth key
        if method == "Chain-of-Table":
            ground_truth_key = f"COT_test-{index}.html"  # Adjust this based on your actual key format in the CoTable JSON
        else:
            ground_truth_key = f"POS_test-{index}.html"

        # Check if the key exists in the ground truth data
        if ground_truth_key in ground_truth and ground_truth[ground_truth_key]['answer'].upper() == feedback.upper():
            correct_responses += 1
        else:
            print(f"Missing or mismatched key: {ground_truth_key}")

    # Calculate accuracy
    accuracy = (correct_responses / len(responses)) * 100 if responses else 0
    accuracy = round(accuracy, 2)

    # Calculate percentages
    total_responses = len(responses)
    accept_percentage = (accept_count / total_responses) * 100 if total_responses else 0
    reject_percentage = (reject_count / total_responses) * 100 if total_responses else 0

    # Round percentages
    accept_percentage = round(accept_percentage, 2)
    reject_percentage = round(reject_percentage, 2)

    return render_template('completed.html',
                           accuracy=accuracy,
                           accept_percentage=accept_percentage,
                           reject_percentage=reject_percentage)


if __name__ == '__main__':
    app.run(debug=True, port=8080)