Spaces:
Sleeping
Sleeping
import json | |
from os import environ as env | |
from typing import Any, Dict, Union | |
from llama_cpp import Llama, LlamaGrammar | |
from pydantic import BaseModel, Field | |
import runpod | |
# If your handler runs inference on a model, load the model here. | |
# You will want models to be loaded into memory before starting serverless. | |
from huggingface_hub import hf_hub_download | |
small_repo = "TheBloke/phi-2-GGUF" | |
small_model="phi-2.Q2_K.gguf" | |
big_repo = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF" | |
big_model = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf" | |
LLM_MODEL_PATH =hf_hub_download( | |
repo_id=big_repo, | |
filename=big_model, | |
) | |
print(f"Model downloaded to {LLM_MODEL_PATH}") | |
in_memory_llm = None | |
N_GPU_LAYERS = env.get("N_GPU_LAYERS", -1) # Default to -1, which means use all layers if available | |
CONTEXT_SIZE = int(env.get("CONTEXT_SIZE", 2048)) | |
USE_HTTP_SERVER = env.get("USE_HTTP_SERVER", "false").lower() == "true" | |
MAX_TOKENS = int(env.get("MAX_TOKENS", 1000)) | |
TEMPERATURE = float(env.get("TEMPERATURE", 0.3)) | |
class Movie(BaseModel): | |
title: str = Field(..., title="The title of the movie") | |
year: int = Field(..., title="The year the movie was released") | |
director: str = Field(..., title="The director of the movie") | |
genre: str = Field(..., title="The genre of the movie") | |
plot: str = Field(..., title="Plot summary of the movie") | |
JSON_EXAMPLE_MOVIE = """ | |
{ "title": "The Matrix", "year": 1999, "director": "The Wachowskis", "genre": "Science Fiction", "plot":"Prgrammer realises he lives in simulation and plays key role." | |
""" | |
if in_memory_llm is None: | |
print("Loading model into memory. If you didn't want this, set the USE_HTTP_SERVER environment variable to 'true'.") | |
in_memory_llm = Llama(model_path=LLM_MODEL_PATH, n_ctx=CONTEXT_SIZE, n_gpu_layers=N_GPU_LAYERS, verbose=True) | |
def llm_stream_sans_network( | |
prompt: str, pydantic_model_class=Movie, return_pydantic_object=False | |
) -> Union[str, Dict[str, Any]]: | |
schema = pydantic_model_class.model_json_schema() | |
# Optional example field from schema, is not needed for the grammar generation | |
if "example" in schema: | |
del schema["example"] | |
json_schema = json.dumps(schema) | |
grammar = LlamaGrammar.from_json_schema(json_schema) | |
stream = in_memory_llm( | |
prompt, | |
max_tokens=MAX_TOKENS, | |
temperature=TEMPERATURE, | |
grammar=grammar, | |
stream=True | |
) | |
output_text = "" | |
for chunk in stream: | |
result = chunk["choices"][0] | |
print(result["text"], end='', flush=True) | |
output_text = output_text + result["text"] | |
print('\n') | |
if return_pydantic_object: | |
model_object = pydantic_model_class.model_validate_json(output_text) | |
return model_object | |
else: | |
return output_text | |
def handler(job): | |
""" Handler function that will be used to process jobs. """ | |
job_input = job['input'] | |
name = job_input.get('name', 'World') | |
#return f"Hello, {name}!" | |
return llm_stream_sans_network( | |
f"""You need to output JSON objects describing movies. | |
For example for the movie called: `The Matrix`: Output: {JSON_EXAMPLE_MOVIE} | |
Instruct: Output the JSON object for the movie: `{name}` Output: """) | |
runpod.serverless.start({"handler": handler}) | |