|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import os |
|
import torch.multiprocessing as mp |
|
import time |
|
|
|
|
|
def check_mem(cuda_device): |
|
devices_info = ( |
|
os.popen('"/usr/bin/nvidia-smi" --query-gpu=memory.total,memory.used --format=csv,nounits,noheader') |
|
.read() |
|
.strip() |
|
.split("\n") |
|
) |
|
total, used = devices_info[int(cuda_device)].split(",") |
|
return total, used |
|
|
|
|
|
def loop(cuda_device): |
|
cuda_i = torch.device(f"cuda:{cuda_device}") |
|
total, used = check_mem(cuda_device) |
|
total = int(total) |
|
used = int(used) |
|
max_mem = int(total * 0.9) |
|
block_mem = max_mem - used |
|
while True: |
|
x = torch.rand(20, 512, 512, dtype=torch.float, device=cuda_i) |
|
y = torch.rand(20, 512, 512, dtype=torch.float, device=cuda_i) |
|
time.sleep(0.001) |
|
x = torch.matmul(x, y) |
|
|
|
|
|
def main(): |
|
if torch.cuda.is_available(): |
|
num_processes = torch.cuda.device_count() |
|
processes = list() |
|
for i in range(num_processes): |
|
p = mp.Process(target=loop, args=(i,)) |
|
p.start() |
|
processes.append(p) |
|
for p in processes: |
|
p.join() |
|
|
|
|
|
if __name__ == "__main__": |
|
torch.multiprocessing.set_start_method("spawn") |
|
main() |
|
|