|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import imageio |
|
import numpy as np |
|
import json |
|
from typing import Union |
|
import matplotlib.pyplot as plt |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
import torch.distributed as dist |
|
from torchvision import transforms |
|
|
|
from tqdm import tqdm |
|
from einops import rearrange |
|
import cv2 |
|
from decord import AudioReader, VideoReader |
|
import shutil |
|
import subprocess |
|
|
|
|
|
|
|
eps = np.finfo(np.float32).eps |
|
|
|
|
|
def read_json(filepath: str): |
|
with open(filepath) as f: |
|
json_dict = json.load(f) |
|
return json_dict |
|
|
|
|
|
def read_video(video_path: str, change_fps=True, use_decord=True): |
|
if change_fps: |
|
temp_dir = "temp" |
|
if os.path.exists(temp_dir): |
|
shutil.rmtree(temp_dir) |
|
os.makedirs(temp_dir, exist_ok=True) |
|
command = ( |
|
f"ffmpeg -loglevel error -y -nostdin -i {video_path} -r 25 -crf 18 {os.path.join(temp_dir, 'video.mp4')}" |
|
) |
|
subprocess.run(command, shell=True) |
|
target_video_path = os.path.join(temp_dir, "video.mp4") |
|
else: |
|
target_video_path = video_path |
|
|
|
if use_decord: |
|
return read_video_decord(target_video_path) |
|
else: |
|
return read_video_cv2(target_video_path) |
|
|
|
|
|
def read_video_decord(video_path: str): |
|
vr = VideoReader(video_path) |
|
video_frames = vr[:].asnumpy() |
|
vr.seek(0) |
|
return video_frames |
|
|
|
|
|
def read_video_cv2(video_path: str): |
|
|
|
cap = cv2.VideoCapture(video_path) |
|
|
|
|
|
if not cap.isOpened(): |
|
print("Error: Could not open video.") |
|
return np.array([]) |
|
|
|
frames = [] |
|
|
|
while True: |
|
|
|
ret, frame = cap.read() |
|
|
|
|
|
if not ret: |
|
break |
|
|
|
|
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
|
frames.append(frame_rgb) |
|
|
|
|
|
cap.release() |
|
|
|
return np.array(frames) |
|
|
|
|
|
def read_audio(audio_path: str, audio_sample_rate: int = 16000): |
|
if audio_path is None: |
|
raise ValueError("Audio path is required.") |
|
ar = AudioReader(audio_path, sample_rate=audio_sample_rate, mono=True) |
|
|
|
|
|
audio_samples = torch.from_numpy(ar[:].asnumpy()) |
|
audio_samples = audio_samples.squeeze(0) |
|
|
|
return audio_samples |
|
|
|
|
|
def write_video(video_output_path: str, video_frames: np.ndarray, fps: int): |
|
height, width = video_frames[0].shape[:2] |
|
out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) |
|
|
|
for frame in video_frames: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
out.write(frame) |
|
out.release() |
|
|
|
|
|
def init_dist(backend="nccl", **kwargs): |
|
"""Initializes distributed environment.""" |
|
rank = int(os.environ["RANK"]) |
|
num_gpus = torch.cuda.device_count() |
|
if num_gpus == 0: |
|
raise RuntimeError("No GPUs available for training.") |
|
local_rank = rank % num_gpus |
|
torch.cuda.set_device(local_rank) |
|
dist.init_process_group(backend=backend, **kwargs) |
|
|
|
return local_rank |
|
|
|
|
|
def zero_rank_print(s): |
|
if dist.is_initialized() and dist.get_rank() == 0: |
|
print("### " + s) |
|
|
|
|
|
def zero_rank_log(logger, message: str): |
|
if dist.is_initialized() and dist.get_rank() == 0: |
|
logger.info(message) |
|
|
|
|
|
def make_audio_window(audio_embeddings: torch.Tensor, window_size: int): |
|
audio_window = [] |
|
end_idx = audio_embeddings.shape[1] - window_size + 1 |
|
for i in range(end_idx): |
|
audio_window.append(audio_embeddings[:, i : i + window_size, :]) |
|
audio_window = torch.stack(audio_window) |
|
audio_window = rearrange(audio_window, "f b w d -> b f w d") |
|
return audio_window |
|
|
|
|
|
def check_video_fps(video_path: str): |
|
cam = cv2.VideoCapture(video_path) |
|
fps = cam.get(cv2.CAP_PROP_FPS) |
|
if fps != 25: |
|
raise ValueError(f"Video FPS is not 25, it is {fps}. Please convert the video to 25 FPS.") |
|
|
|
|
|
def tailor_tensor_to_length(tensor: torch.Tensor, length: int): |
|
if len(tensor) == length: |
|
return tensor |
|
elif len(tensor) > length: |
|
return tensor[:length] |
|
else: |
|
return torch.cat([tensor, tensor[-1].repeat(length - len(tensor))]) |
|
|
|
|
|
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): |
|
videos = rearrange(videos, "b c f h w -> f b c h w") |
|
outputs = [] |
|
for x in videos: |
|
x = torchvision.utils.make_grid(x, nrow=n_rows) |
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
if rescale: |
|
x = (x + 1.0) / 2.0 |
|
x = (x * 255).numpy().astype(np.uint8) |
|
outputs.append(x) |
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
imageio.mimsave(path, outputs, fps=fps) |
|
|
|
|
|
def interpolate_features(features: torch.Tensor, output_len: int) -> torch.Tensor: |
|
features = features.cpu().numpy() |
|
input_len, num_features = features.shape |
|
|
|
input_timesteps = np.linspace(0, 10, input_len) |
|
output_timesteps = np.linspace(0, 10, output_len) |
|
output_features = np.zeros((output_len, num_features)) |
|
for feat in range(num_features): |
|
output_features[:, feat] = np.interp(output_timesteps, input_timesteps, features[:, feat]) |
|
return torch.from_numpy(output_features) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def init_prompt(prompt, pipeline): |
|
uncond_input = pipeline.tokenizer( |
|
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt" |
|
) |
|
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] |
|
text_input = pipeline.tokenizer( |
|
[prompt], |
|
padding="max_length", |
|
max_length=pipeline.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] |
|
context = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
return context |
|
|
|
|
|
def reversed_forward(ddim_scheduler, pred_noise, timesteps, x_t): |
|
|
|
alpha_prod_t = ddim_scheduler.alphas_cumprod[timesteps] |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
if ddim_scheduler.config.prediction_type == "epsilon": |
|
beta_prod_t = beta_prod_t[:, None, None, None, None] |
|
alpha_prod_t = alpha_prod_t[:, None, None, None, None] |
|
pred_original_sample = (x_t - beta_prod_t ** (0.5) * pred_noise) / alpha_prod_t ** (0.5) |
|
else: |
|
raise NotImplementedError("This prediction type is not implemented yet") |
|
|
|
|
|
if ddim_scheduler.config.clip_sample: |
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
return pred_original_sample |
|
|
|
|
|
def next_step( |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
timestep: int, |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
ddim_scheduler, |
|
): |
|
timestep, next_timestep = ( |
|
min(timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), |
|
timestep, |
|
) |
|
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod |
|
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] |
|
beta_prod_t = 1 - alpha_prod_t |
|
next_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 |
|
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output |
|
next_sample = alpha_prod_t_next**0.5 * next_original_sample + next_sample_direction |
|
return next_sample |
|
|
|
|
|
def get_noise_pred_single(latents, t, context, unet): |
|
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] |
|
return noise_pred |
|
|
|
|
|
@torch.no_grad() |
|
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): |
|
context = init_prompt(prompt, pipeline) |
|
uncond_embeddings, cond_embeddings = context.chunk(2) |
|
all_latent = [latent] |
|
latent = latent.clone().detach() |
|
for i in tqdm(range(num_inv_steps)): |
|
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] |
|
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) |
|
latent = next_step(noise_pred, t, latent, ddim_scheduler) |
|
all_latent.append(latent) |
|
return all_latent |
|
|
|
|
|
@torch.no_grad() |
|
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): |
|
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) |
|
return ddim_latents |
|
|
|
|
|
def plot_loss_chart(save_path: str, *args): |
|
|
|
plt.figure() |
|
for loss_line in args: |
|
plt.plot(loss_line[1], loss_line[2], label=loss_line[0]) |
|
plt.xlabel("Step") |
|
plt.ylabel("Loss") |
|
plt.legend() |
|
|
|
|
|
plt.savefig(save_path) |
|
|
|
|
|
plt.close() |
|
|
|
|
|
CRED = "\033[91m" |
|
CEND = "\033[0m" |
|
|
|
|
|
def red_text(text: str): |
|
return f"{CRED}{text}{CEND}" |
|
|
|
|
|
log_loss = nn.BCELoss(reduction="none") |
|
|
|
|
|
def cosine_loss(vision_embeds, audio_embeds, y): |
|
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds) |
|
|
|
|
|
loss = log_loss(sims.unsqueeze(1), y).squeeze() |
|
return loss |
|
|
|
|
|
def save_image(image, save_path): |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = (image * 255).to(torch.uint8) |
|
image = transforms.ToPILImage()(image) |
|
|
|
image.save(save_path) |
|
|
|
|
|
image.close() |
|
|
|
|
|
def gather_loss(loss, device): |
|
|
|
local_loss = loss.item() |
|
global_loss = torch.tensor(local_loss, dtype=torch.float32).to(device) |
|
dist.all_reduce(global_loss, op=dist.ReduceOp.SUM) |
|
|
|
|
|
global_average_loss = global_loss.item() / dist.get_world_size() |
|
return global_average_loss |
|
|
|
|
|
def gather_video_paths_recursively(input_dir): |
|
print(f"Recursively gathering video paths of {input_dir} ...") |
|
paths = [] |
|
gather_video_paths(input_dir, paths) |
|
return paths |
|
|
|
|
|
def gather_video_paths(input_dir, paths): |
|
for file in sorted(os.listdir(input_dir)): |
|
if file.endswith(".mp4"): |
|
filepath = os.path.join(input_dir, file) |
|
paths.append(filepath) |
|
elif os.path.isdir(os.path.join(input_dir, file)): |
|
gather_video_paths(os.path.join(input_dir, file), paths) |
|
|
|
|
|
def count_video_time(video_path): |
|
video = cv2.VideoCapture(video_path) |
|
|
|
frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
return frame_count / fps |
|
|