|
|
|
|
|
import librosa |
|
import librosa.filters |
|
import numpy as np |
|
from scipy import signal |
|
from scipy.io import wavfile |
|
from omegaconf import OmegaConf |
|
import torch |
|
|
|
audio_config_path = "configs/audio.yaml" |
|
|
|
config = OmegaConf.load(audio_config_path) |
|
|
|
|
|
def load_wav(path, sr): |
|
return librosa.core.load(path, sr=sr)[0] |
|
|
|
|
|
def save_wav(wav, path, sr): |
|
wav *= 32767 / max(0.01, np.max(np.abs(wav))) |
|
|
|
wavfile.write(path, sr, wav.astype(np.int16)) |
|
|
|
|
|
def save_wavenet_wav(wav, path, sr): |
|
librosa.output.write_wav(path, wav, sr=sr) |
|
|
|
|
|
def preemphasis(wav, k, preemphasize=True): |
|
if preemphasize: |
|
return signal.lfilter([1, -k], [1], wav) |
|
return wav |
|
|
|
|
|
def inv_preemphasis(wav, k, inv_preemphasize=True): |
|
if inv_preemphasize: |
|
return signal.lfilter([1], [1, -k], wav) |
|
return wav |
|
|
|
|
|
def get_hop_size(): |
|
hop_size = config.audio.hop_size |
|
if hop_size is None: |
|
assert config.audio.frame_shift_ms is not None |
|
hop_size = int(config.audio.frame_shift_ms / 1000 * config.audio.sample_rate) |
|
return hop_size |
|
|
|
|
|
def linearspectrogram(wav): |
|
D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize)) |
|
S = _amp_to_db(np.abs(D)) - config.audio.ref_level_db |
|
|
|
if config.audio.signal_normalization: |
|
return _normalize(S) |
|
return S |
|
|
|
|
|
def melspectrogram(wav): |
|
D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize)) |
|
S = _amp_to_db(_linear_to_mel(np.abs(D))) - config.audio.ref_level_db |
|
|
|
if config.audio.signal_normalization: |
|
return _normalize(S) |
|
return S |
|
|
|
|
|
def _lws_processor(): |
|
import lws |
|
|
|
return lws.lws(config.audio.n_fft, get_hop_size(), fftsize=config.audio.win_size, mode="speech") |
|
|
|
|
|
def _stft(y): |
|
if config.audio.use_lws: |
|
return _lws_processor(config.audio).stft(y).T |
|
else: |
|
return librosa.stft(y=y, n_fft=config.audio.n_fft, hop_length=get_hop_size(), win_length=config.audio.win_size) |
|
|
|
|
|
|
|
|
|
def num_frames(length, fsize, fshift): |
|
"""Compute number of time frames of spectrogram""" |
|
pad = fsize - fshift |
|
if length % fshift == 0: |
|
M = (length + pad * 2 - fsize) // fshift + 1 |
|
else: |
|
M = (length + pad * 2 - fsize) // fshift + 2 |
|
return M |
|
|
|
|
|
def pad_lr(x, fsize, fshift): |
|
"""Compute left and right padding""" |
|
M = num_frames(len(x), fsize, fshift) |
|
pad = fsize - fshift |
|
T = len(x) + 2 * pad |
|
r = (M - 1) * fshift + fsize - T |
|
return pad, pad + r |
|
|
|
|
|
|
|
|
|
def librosa_pad_lr(x, fsize, fshift): |
|
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] |
|
|
|
|
|
|
|
_mel_basis = None |
|
|
|
|
|
def _linear_to_mel(spectogram): |
|
global _mel_basis |
|
if _mel_basis is None: |
|
_mel_basis = _build_mel_basis() |
|
return np.dot(_mel_basis, spectogram) |
|
|
|
|
|
def _build_mel_basis(): |
|
assert config.audio.fmax <= config.audio.sample_rate // 2 |
|
return librosa.filters.mel( |
|
sr=config.audio.sample_rate, |
|
n_fft=config.audio.n_fft, |
|
n_mels=config.audio.num_mels, |
|
fmin=config.audio.fmin, |
|
fmax=config.audio.fmax, |
|
) |
|
|
|
|
|
def _amp_to_db(x): |
|
min_level = np.exp(config.audio.min_level_db / 20 * np.log(10)) |
|
return 20 * np.log10(np.maximum(min_level, x)) |
|
|
|
|
|
def _db_to_amp(x): |
|
return np.power(10.0, (x) * 0.05) |
|
|
|
|
|
def _normalize(S): |
|
if config.audio.allow_clipping_in_normalization: |
|
if config.audio.symmetric_mels: |
|
return np.clip( |
|
(2 * config.audio.max_abs_value) * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)) |
|
- config.audio.max_abs_value, |
|
-config.audio.max_abs_value, |
|
config.audio.max_abs_value, |
|
) |
|
else: |
|
return np.clip( |
|
config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)), |
|
0, |
|
config.audio.max_abs_value, |
|
) |
|
|
|
assert S.max() <= 0 and S.min() - config.audio.min_level_db >= 0 |
|
if config.audio.symmetric_mels: |
|
return (2 * config.audio.max_abs_value) * ( |
|
(S - config.audio.min_level_db) / (-config.audio.min_level_db) |
|
) - config.audio.max_abs_value |
|
else: |
|
return config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)) |
|
|
|
|
|
def _denormalize(D): |
|
if config.audio.allow_clipping_in_normalization: |
|
if config.audio.symmetric_mels: |
|
return ( |
|
(np.clip(D, -config.audio.max_abs_value, config.audio.max_abs_value) + config.audio.max_abs_value) |
|
* -config.audio.min_level_db |
|
/ (2 * config.audio.max_abs_value) |
|
) + config.audio.min_level_db |
|
else: |
|
return ( |
|
np.clip(D, 0, config.audio.max_abs_value) * -config.audio.min_level_db / config.audio.max_abs_value |
|
) + config.audio.min_level_db |
|
|
|
if config.audio.symmetric_mels: |
|
return ( |
|
(D + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value) |
|
) + config.audio.min_level_db |
|
else: |
|
return (D * -config.audio.min_level_db / config.audio.max_abs_value) + config.audio.min_level_db |
|
|
|
|
|
def get_melspec_overlap(audio_samples, melspec_length=52): |
|
mel_spec_overlap = melspectrogram(audio_samples.numpy()) |
|
mel_spec_overlap = torch.from_numpy(mel_spec_overlap) |
|
i = 0 |
|
mel_spec_overlap_list = [] |
|
while i + melspec_length < mel_spec_overlap.shape[1] - 3: |
|
mel_spec_overlap_list.append(mel_spec_overlap[:, i : i + melspec_length].unsqueeze(0)) |
|
i += 3 |
|
mel_spec_overlap = torch.stack(mel_spec_overlap_list) |
|
return mel_spec_overlap |
|
|