|
|
|
|
|
import inspect |
|
import os |
|
import shutil |
|
from typing import Callable, List, Optional, Union |
|
import subprocess |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
|
|
from diffusers.utils import is_accelerate_available |
|
from packaging import version |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils import deprecate, logging |
|
|
|
from einops import rearrange |
|
|
|
from ..models.unet import UNet3DConditionModel |
|
from ..utils.image_processor import ImageProcessor |
|
from ..utils.util import read_video, read_audio, write_video |
|
from ..whisper.audio2feature import Audio2Feature |
|
import tqdm |
|
import soundfile as sf |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class LipsyncPipeline(DiffusionPipeline): |
|
_optional_components = [] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
audio_encoder: Audio2Feature, |
|
unet: UNet3DConditionModel, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
audio_encoder=audio_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
self.set_progress_bar_config(desc="Steps") |
|
|
|
def enable_vae_slicing(self): |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
def _execution_device(self): |
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def decode_latents(self, latents): |
|
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor |
|
latents = rearrange(latents, "b c f h w -> (b f) c h w") |
|
decoded_latents = self.vae.decode(latents).sample |
|
return decoded_latents |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs(self, height, width, callback_steps): |
|
assert height == width, "Height and width must be equal" |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
1, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
rand_device = "cpu" if device.type == "mps" else device |
|
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) |
|
latents = latents.repeat(1, 1, num_frames, 1, 1) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_mask_latents( |
|
self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance |
|
): |
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate( |
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
) |
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
|
|
|
|
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator) |
|
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
|
|
mask = rearrange(mask, "f c h w -> 1 c f h w") |
|
masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w") |
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask |
|
masked_image_latents = ( |
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents |
|
) |
|
return mask, masked_image_latents |
|
|
|
def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance): |
|
images = images.to(device=device, dtype=dtype) |
|
image_latents = self.vae.encode(images).latent_dist.sample(generator=generator) |
|
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
image_latents = rearrange(image_latents, "f c h w -> 1 c f h w") |
|
image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents |
|
|
|
return image_latents |
|
|
|
def set_progress_bar_config(self, **kwargs): |
|
if not hasattr(self, "_progress_bar_config"): |
|
self._progress_bar_config = {} |
|
self._progress_bar_config.update(kwargs) |
|
|
|
@staticmethod |
|
def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype): |
|
|
|
pixel_values = pixel_values.to(device=device, dtype=weight_dtype) |
|
masks = masks.to(device=device, dtype=weight_dtype) |
|
combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks) |
|
return combined_pixel_values |
|
|
|
@staticmethod |
|
def pixel_values_to_images(pixel_values: torch.Tensor): |
|
pixel_values = rearrange(pixel_values, "f c h w -> f h w c") |
|
pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1) |
|
images = (pixel_values * 255).to(torch.uint8) |
|
images = images.cpu().numpy() |
|
return images |
|
|
|
def affine_transform_video(self, video_path): |
|
video_frames = read_video(video_path, use_decord=False) |
|
faces = [] |
|
boxes = [] |
|
affine_matrices = [] |
|
print(f"Affine transforming {len(video_frames)} faces...") |
|
for frame in tqdm.tqdm(video_frames): |
|
face, box, affine_matrix = self.image_processor.affine_transform(frame) |
|
faces.append(face) |
|
boxes.append(box) |
|
affine_matrices.append(affine_matrix) |
|
|
|
faces = torch.stack(faces) |
|
return faces, video_frames, boxes, affine_matrices |
|
|
|
def restore_video(self, faces, video_frames, boxes, affine_matrices): |
|
video_frames = video_frames[: faces.shape[0]] |
|
out_frames = [] |
|
for index, face in enumerate(faces): |
|
x1, y1, x2, y2 = boxes[index] |
|
height = int(y2 - y1) |
|
width = int(x2 - x1) |
|
face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True) |
|
face = rearrange(face, "c h w -> h w c") |
|
face = (face / 2 + 0.5).clamp(0, 1) |
|
face = (face * 255).to(torch.uint8).cpu().numpy() |
|
out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index]) |
|
out_frames.append(out_frame) |
|
return np.stack(out_frames, axis=0) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
video_path: str, |
|
audio_path: str, |
|
video_out_path: str, |
|
video_mask_path: str = None, |
|
num_frames: int = 16, |
|
video_fps: int = 25, |
|
audio_sample_rate: int = 16000, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 20, |
|
guidance_scale: float = 1.5, |
|
weight_dtype: Optional[torch.dtype] = torch.float16, |
|
eta: float = 0.0, |
|
mask: str = "fix_mask", |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
is_train = self.unet.training |
|
self.unet.eval() |
|
|
|
|
|
batch_size = 1 |
|
device = self._execution_device |
|
self.image_processor = ImageProcessor(height, mask=mask, device="cuda") |
|
self.set_progress_bar_config(desc=f"Sample frames: {num_frames}") |
|
|
|
video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path) |
|
audio_samples = read_audio(audio_path) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(height, width, callback_steps) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
self.video_fps = video_fps |
|
|
|
if self.unet.add_audio_layer: |
|
whisper_feature = self.audio_encoder.audio2feat(audio_path) |
|
whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps) |
|
|
|
num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames |
|
else: |
|
num_inferences = len(video_frames) // num_frames |
|
|
|
synced_video_frames = [] |
|
masked_video_frames = [] |
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
|
|
|
|
all_latents = self.prepare_latents( |
|
batch_size, |
|
num_frames * num_inferences, |
|
num_channels_latents, |
|
height, |
|
width, |
|
weight_dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."): |
|
if self.unet.add_audio_layer: |
|
audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames]) |
|
audio_embeds = audio_embeds.to(device, dtype=weight_dtype) |
|
if do_classifier_free_guidance: |
|
empty_audio_embeds = torch.zeros_like(audio_embeds) |
|
audio_embeds = torch.cat([empty_audio_embeds, audio_embeds]) |
|
else: |
|
audio_embeds = None |
|
inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames] |
|
latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames] |
|
pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images( |
|
inference_video_frames, affine_transform=False |
|
) |
|
|
|
|
|
mask_latents, masked_image_latents = self.prepare_mask_latents( |
|
masks, |
|
masked_pixel_values, |
|
height, |
|
width, |
|
weight_dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
|
|
image_latents = self.prepare_image_latents( |
|
pixel_values, |
|
device, |
|
weight_dtype, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for j, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
latent_model_input = torch.cat( |
|
[latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1 |
|
) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and j % callback_steps == 0: |
|
callback(j, t, latents) |
|
|
|
|
|
decoded_latents = self.decode_latents(latents) |
|
decoded_latents = self.paste_surrounding_pixels_back( |
|
decoded_latents, pixel_values, 1 - masks, device, weight_dtype |
|
) |
|
synced_video_frames.append(decoded_latents) |
|
masked_video_frames.append(masked_pixel_values) |
|
|
|
synced_video_frames = self.restore_video( |
|
torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices |
|
) |
|
masked_video_frames = self.restore_video( |
|
torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices |
|
) |
|
|
|
audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate) |
|
audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy() |
|
|
|
if is_train: |
|
self.unet.train() |
|
|
|
temp_dir = "temp" |
|
if os.path.exists(temp_dir): |
|
shutil.rmtree(temp_dir) |
|
os.makedirs(temp_dir, exist_ok=True) |
|
|
|
write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25) |
|
|
|
|
|
sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate) |
|
|
|
command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}" |
|
subprocess.run(command, shell=True) |
|
|