|
|
|
|
|
|
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class SyncNetWav2Lip(nn.Module): |
|
def __init__(self, act_fn="leaky"): |
|
super().__init__() |
|
|
|
|
|
self.visual_encoder = nn.Sequential( |
|
Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3, act_fn=act_fn), |
|
Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1, act_fn=act_fn), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act_fn=act_fn), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(128, 256, kernel_size=3, stride=3, padding=1, act_fn=act_fn), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act_fn=act_fn), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act_fn=act_fn), |
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act_fn="relu"), |
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), |
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"), |
|
) |
|
|
|
|
|
self.audio_encoder = nn.Sequential( |
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act_fn=act_fn), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act_fn=act_fn), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act_fn=act_fn), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act_fn=act_fn), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act_fn=act_fn), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), |
|
Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), |
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"), |
|
) |
|
|
|
def forward(self, image_sequences, audio_sequences): |
|
vision_embeds = self.visual_encoder(image_sequences) |
|
audio_embeds = self.audio_encoder(audio_sequences) |
|
|
|
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) |
|
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) |
|
|
|
|
|
vision_embeds = F.normalize(vision_embeds, p=2, dim=1) |
|
audio_embeds = F.normalize(audio_embeds, p=2, dim=1) |
|
|
|
return vision_embeds, audio_embeds |
|
|
|
|
|
class Conv2d(nn.Module): |
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, act_fn="relu", *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout)) |
|
if act_fn == "relu": |
|
self.act_fn = nn.ReLU() |
|
elif act_fn == "tanh": |
|
self.act_fn = nn.Tanh() |
|
elif act_fn == "silu": |
|
self.act_fn = nn.SiLU() |
|
elif act_fn == "leaky": |
|
self.act_fn = nn.LeakyReLU(0.2, inplace=True) |
|
|
|
self.residual = residual |
|
|
|
def forward(self, x): |
|
out = self.conv_block(x) |
|
if self.residual: |
|
out += x |
|
return self.act_fn(out) |
|
|