|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import nn |
|
from einops import rearrange |
|
from torch.nn import functional as F |
|
from ..utils.util import cosine_loss |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.models.attention import CrossAttention, FeedForward |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from einops import rearrange |
|
|
|
|
|
class SyncNet(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.audio_encoder = DownEncoder2D( |
|
in_channels=config["audio_encoder"]["in_channels"], |
|
block_out_channels=config["audio_encoder"]["block_out_channels"], |
|
downsample_factors=config["audio_encoder"]["downsample_factors"], |
|
dropout=config["audio_encoder"]["dropout"], |
|
attn_blocks=config["audio_encoder"]["attn_blocks"], |
|
) |
|
|
|
self.visual_encoder = DownEncoder2D( |
|
in_channels=config["visual_encoder"]["in_channels"], |
|
block_out_channels=config["visual_encoder"]["block_out_channels"], |
|
downsample_factors=config["visual_encoder"]["downsample_factors"], |
|
dropout=config["visual_encoder"]["dropout"], |
|
attn_blocks=config["visual_encoder"]["attn_blocks"], |
|
) |
|
|
|
self.eval() |
|
|
|
def forward(self, image_sequences, audio_sequences): |
|
vision_embeds = self.visual_encoder(image_sequences) |
|
audio_embeds = self.audio_encoder(audio_sequences) |
|
|
|
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) |
|
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) |
|
|
|
|
|
vision_embeds = F.normalize(vision_embeds, p=2, dim=1) |
|
audio_embeds = F.normalize(audio_embeds, p=2, dim=1) |
|
|
|
return vision_embeds, audio_embeds |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
eps: float = 1e-6, |
|
act_fn: str = "silu", |
|
downsample_factor=2, |
|
): |
|
super().__init__() |
|
|
|
self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True) |
|
self.dropout = nn.Dropout(dropout) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if act_fn == "relu": |
|
self.act_fn = nn.ReLU() |
|
elif act_fn == "silu": |
|
self.act_fn = nn.SiLU() |
|
|
|
if in_channels != out_channels: |
|
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
else: |
|
self.conv_shortcut = None |
|
|
|
if isinstance(downsample_factor, list): |
|
downsample_factor = tuple(downsample_factor) |
|
|
|
if downsample_factor == 1: |
|
self.downsample_conv = None |
|
else: |
|
self.downsample_conv = nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0 |
|
) |
|
self.pad = (0, 1, 0, 1) |
|
if isinstance(downsample_factor, tuple): |
|
if downsample_factor[0] == 1: |
|
self.pad = (0, 1, 1, 1) |
|
elif downsample_factor[1] == 1: |
|
self.pad = (1, 1, 0, 1) |
|
|
|
def forward(self, input_tensor): |
|
hidden_states = input_tensor |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.act_fn(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
hidden_states = self.norm2(hidden_states) |
|
hidden_states = self.act_fn(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
hidden_states += input_tensor |
|
|
|
if self.downsample_conv is not None: |
|
hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0) |
|
hidden_states = self.downsample_conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttentionBlock2D(nn.Module): |
|
def __init__(self, query_dim, norm_num_groups=32, dropout=0.0): |
|
super().__init__() |
|
if not is_xformers_available(): |
|
raise ModuleNotFoundError( |
|
"You have to install xformers to enable memory efficient attetion", name="xformers" |
|
) |
|
|
|
self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
self.norm3 = nn.LayerNorm(query_dim) |
|
|
|
self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu") |
|
|
|
self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0) |
|
self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0) |
|
|
|
self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True) |
|
self.attn._use_memory_efficient_attention_xformers = True |
|
|
|
def forward(self, hidden_states): |
|
assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}." |
|
|
|
batch, channel, height, width = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.conv_in(hidden_states) |
|
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") |
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states |
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width) |
|
hidden_states = self.conv_out(hidden_states) |
|
|
|
hidden_states = hidden_states + residual |
|
return hidden_states |
|
|
|
|
|
class DownEncoder2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=4 * 16, |
|
block_out_channels=[64, 128, 256, 256], |
|
downsample_factors=[2, 2, 2, 2], |
|
layers_per_block=2, |
|
norm_num_groups=32, |
|
attn_blocks=[1, 1, 1, 1], |
|
dropout: float = 0.0, |
|
act_fn="silu", |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
output_channels = block_out_channels[0] |
|
for i, block_out_channel in enumerate(block_out_channels): |
|
input_channels = output_channels |
|
output_channels = block_out_channel |
|
|
|
|
|
down_block = ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=output_channels, |
|
downsample_factor=downsample_factors[i], |
|
norm_num_groups=norm_num_groups, |
|
dropout=dropout, |
|
act_fn=act_fn, |
|
) |
|
|
|
self.down_blocks.append(down_block) |
|
|
|
if attn_blocks[i] == 1: |
|
attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout) |
|
self.down_blocks.append(attention_block) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
self.act_fn_out = nn.ReLU() |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.conv_in(hidden_states) |
|
|
|
|
|
for down_block in self.down_blocks: |
|
hidden_states = down_block(hidden_states) |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states) |
|
hidden_states = self.act_fn_out(hidden_states) |
|
|
|
return hidden_states |
|
|