|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.init as init |
|
from .box_utils import Detect, PriorBox |
|
|
|
|
|
class L2Norm(nn.Module): |
|
|
|
def __init__(self, n_channels, scale): |
|
super(L2Norm, self).__init__() |
|
self.n_channels = n_channels |
|
self.gamma = scale or None |
|
self.eps = 1e-10 |
|
self.weight = nn.Parameter(torch.Tensor(self.n_channels)) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
init.constant_(self.weight, self.gamma) |
|
|
|
def forward(self, x): |
|
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps |
|
x = torch.div(x, norm) |
|
out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x |
|
return out |
|
|
|
|
|
class S3FDNet(nn.Module): |
|
|
|
def __init__(self, device='cuda'): |
|
super(S3FDNet, self).__init__() |
|
self.device = device |
|
|
|
self.vgg = nn.ModuleList([ |
|
nn.Conv2d(3, 64, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(64, 64, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(2, 2), |
|
|
|
nn.Conv2d(64, 128, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(128, 128, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(2, 2), |
|
|
|
nn.Conv2d(128, 256, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 256, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 256, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(2, 2, ceil_mode=True), |
|
|
|
nn.Conv2d(256, 512, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(512, 512, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(512, 512, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(2, 2), |
|
|
|
nn.Conv2d(512, 512, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(512, 512, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(512, 512, 3, 1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(2, 2), |
|
|
|
nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(1024, 1024, 1, 1), |
|
nn.ReLU(inplace=True), |
|
]) |
|
|
|
self.L2Norm3_3 = L2Norm(256, 10) |
|
self.L2Norm4_3 = L2Norm(512, 8) |
|
self.L2Norm5_3 = L2Norm(512, 5) |
|
|
|
self.extras = nn.ModuleList([ |
|
nn.Conv2d(1024, 256, 1, 1), |
|
nn.Conv2d(256, 512, 3, 2, padding=1), |
|
nn.Conv2d(512, 128, 1, 1), |
|
nn.Conv2d(128, 256, 3, 2, padding=1), |
|
]) |
|
|
|
self.loc = nn.ModuleList([ |
|
nn.Conv2d(256, 4, 3, 1, padding=1), |
|
nn.Conv2d(512, 4, 3, 1, padding=1), |
|
nn.Conv2d(512, 4, 3, 1, padding=1), |
|
nn.Conv2d(1024, 4, 3, 1, padding=1), |
|
nn.Conv2d(512, 4, 3, 1, padding=1), |
|
nn.Conv2d(256, 4, 3, 1, padding=1), |
|
]) |
|
|
|
self.conf = nn.ModuleList([ |
|
nn.Conv2d(256, 4, 3, 1, padding=1), |
|
nn.Conv2d(512, 2, 3, 1, padding=1), |
|
nn.Conv2d(512, 2, 3, 1, padding=1), |
|
nn.Conv2d(1024, 2, 3, 1, padding=1), |
|
nn.Conv2d(512, 2, 3, 1, padding=1), |
|
nn.Conv2d(256, 2, 3, 1, padding=1), |
|
]) |
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
self.detect = Detect() |
|
|
|
def forward(self, x): |
|
size = x.size()[2:] |
|
sources = list() |
|
loc = list() |
|
conf = list() |
|
|
|
for k in range(16): |
|
x = self.vgg[k](x) |
|
s = self.L2Norm3_3(x) |
|
sources.append(s) |
|
|
|
for k in range(16, 23): |
|
x = self.vgg[k](x) |
|
s = self.L2Norm4_3(x) |
|
sources.append(s) |
|
|
|
for k in range(23, 30): |
|
x = self.vgg[k](x) |
|
s = self.L2Norm5_3(x) |
|
sources.append(s) |
|
|
|
for k in range(30, len(self.vgg)): |
|
x = self.vgg[k](x) |
|
sources.append(x) |
|
|
|
|
|
for k, v in enumerate(self.extras): |
|
x = F.relu(v(x), inplace=True) |
|
if k % 2 == 1: |
|
sources.append(x) |
|
|
|
|
|
loc_x = self.loc[0](sources[0]) |
|
conf_x = self.conf[0](sources[0]) |
|
|
|
max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True) |
|
conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1) |
|
|
|
loc.append(loc_x.permute(0, 2, 3, 1).contiguous()) |
|
conf.append(conf_x.permute(0, 2, 3, 1).contiguous()) |
|
|
|
for i in range(1, len(sources)): |
|
x = sources[i] |
|
conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous()) |
|
loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous()) |
|
|
|
features_maps = [] |
|
for i in range(len(loc)): |
|
feat = [] |
|
feat += [loc[i].size(1), loc[i].size(2)] |
|
features_maps += [feat] |
|
|
|
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) |
|
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) |
|
|
|
with torch.no_grad(): |
|
self.priorbox = PriorBox(size, features_maps) |
|
self.priors = self.priorbox.forward() |
|
|
|
output = self.detect.forward( |
|
loc.view(loc.size(0), -1, 4), |
|
self.softmax(conf.view(conf.size(0), -1, 2)), |
|
self.priors.type(type(x.data)).to(self.device) |
|
) |
|
|
|
return output |
|
|