Spaces:
Running
Running
File size: 5,077 Bytes
24a15c0 908b597 697be1a 908b597 697be1a 908b597 697be1a 908b597 697be1a 908b597 f008087 908b597 697be1a 7aa2aea 3b31368 7aa2aea 3b31368 7aa2aea 697be1a 908b597 697be1a 40eaa37 697be1a 908b597 40eaa37 908b597 7aa2aea 908b597 7aa2aea 908b597 7aa2aea 908b597 7aa2aea 40eaa37 7aa2aea 697be1a 908b597 3be1fea 908b597 3be1fea 908b597 3be1fea 697be1a 908b597 697be1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import pandas as pd
import streamlit as st
import io
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame:
"""Extracts a table from a markdown text and formats it as a pandas DataFrame.
Args:
text (str): Markdown text containing a table.
Returns:
pd.DataFrame: Table as pandas DataFrame.
"""
df = (
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1)
.dropna(axis=1, how="all") # drop empty columns
.iloc[1:] # drop first row which is the "----" separator of the original markdown table
.sort_index(ascending=True)
.replace(r"^\s*$", float("nan"), regex=True)
.astype(float, errors="ignore")
)
# remove whitespace from column names and index
df.columns = df.columns.str.strip()
df.index = df.index.str.strip()
return df
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str:
"""Extracts the markdown table from a multiline string.
Args:
multiline (str): content of README.md file.
table_headline (str): Headline of the table in the README.md file.
next_headline_start (str, optional): Start of the next headline. Defaults to "#".
Returns:
str: Markdown table.
Raises:
ValueError: If the table could not be found.
"""
# extract everything between the table headline and the next headline
table = []
start = False
for line in multiline.split("\n"):
if line.startswith(table_headline):
start = True
elif line.startswith(next_headline_start):
start = False
elif start:
table.append(line + "\n")
if len(table) == 0:
raise ValueError(f"Could not find table with headline '{table_headline}'")
return "".join(table)
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
modify = st.checkbox("Add filters")
if not modify:
return df
df = df.copy()
modification_container = st.container()
with modification_container:
to_filter_index = st.multiselect("Filter by model:", df.index)
if to_filter_index:
df = pd.DataFrame(df.loc[to_filter_index])
to_filter_columns = st.multiselect("Filter by benchmark:", df.columns)
if to_filter_columns:
df = pd.DataFrame(df[to_filter_columns])
return df
def setup_basic():
title = "π LLM-Leaderboard"
st.set_page_config(
page_title=title,
page_icon="π",
layout="wide",
)
st.title(title)
st.markdown(
"""
A joint community effort to create one central leaderboard for LLMs.
Visit [llm-leaderboard](https://github.com/LudwigStumpp/llm-leaderboard) to contribute.
"""
)
def setup_leaderboard(readme: str):
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard")
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
st.markdown("## Leaderboard")
st.dataframe(filter_dataframe(df_leaderboard))
def setup_benchmarks(readme: str):
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks")
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)
st.markdown("## Covered Benchmarks")
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique())
df_selected = df_benchmarks.loc[selected_benchmark]
text = [
f"Name: {selected_benchmark} ",
]
for key in df_selected.keys():
text.append(f"{key}: {df_selected[key]} ")
st.markdown("\n".join(text))
def setup_sources(readme: str):
sources_table = extract_markdown_table_from_multiline(readme, table_headline="## Sources")
df_sources = extract_table_and_format_from_markdown_text(sources_table)
st.markdown("## Sources of Above Figures")
selected_source = st.selectbox("Select a source to learn more:", df_sources.index.unique())
df_selected = df_sources.loc[selected_source]
text = [
f"Author: {selected_source} ",
]
for key in df_selected.keys():
text.append(f"{key}: {df_selected[key]} ")
st.markdown("\n".join(text))
def setup_footer():
st.markdown(
"""
---
Made with β€οΈ by the awesome open-source community from all over π.
"""
)
def main():
setup_basic()
with open("README.md", "r") as f:
readme = f.read()
setup_leaderboard(readme)
setup_benchmarks(readme)
setup_sources(readme)
setup_footer()
if __name__ == "__main__":
main()
|