|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from diffusers import StableDiffusionInpaintPipeline |
|
from PIL import Image |
|
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator |
|
from diffusers import ControlNetModel |
|
from diffusers import UniPCMultistepScheduler |
|
from controlnet_inpaint import StableDiffusionControlNetInpaintPipeline |
|
import colorsys |
|
|
|
sam_checkpoint = "sam_vit_h_4b8939.pth" |
|
model_type = "vit_h" |
|
device = "cuda" |
|
|
|
|
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
predictor = SamPredictor(sam) |
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"lllyasviel/sd-controlnet-seg", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# StableSAM: Stable Diffusion + Segment Anything Model") |
|
gr.Markdown( |
|
""" |
|
To try the demo, upload an image and select object(s) you want to inpaint. |
|
Write a prompt & a negative prompt to control the inpainting. |
|
Click on the "Submit" button to inpaint the selected object(s). |
|
Check "Background" to inpaint the background instead of the selected object(s). |
|
|
|
If the demo is slow, clone the space to your own HF account and run on a GPU. |
|
""" |
|
) |
|
selected_pixels = gr.State([]) |
|
with gr.Row(): |
|
input_img = gr.Image(label="Input") |
|
mask_img = gr.Image(label="Mask", interactive=False) |
|
seg_img = gr.Image(label="Segmentation", interactive=False) |
|
output_img = gr.Image(label="Output", interactive=False) |
|
|
|
with gr.Row(): |
|
prompt_text = gr.Textbox(lines=1, label="Prompt") |
|
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt") |
|
is_background = gr.Checkbox(label="Background") |
|
|
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
clear = gr.Button("Clear") |
|
|
|
def generate_mask(image, bg, sel_pix, evt: gr.SelectData): |
|
sel_pix.append(evt.index) |
|
predictor.set_image(image) |
|
input_point = np.array(sel_pix) |
|
input_label = np.ones(input_point.shape[0]) |
|
mask, _, _ = predictor.predict( |
|
point_coords=input_point, |
|
point_labels=input_label, |
|
multimask_output=False, |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
if bg: |
|
mask = np.logical_not(mask) |
|
mask = Image.fromarray(mask[0, :, :]) |
|
segs = mask_generator.generate(image) |
|
boolean_masks = [s["segmentation"] for s in segs] |
|
finseg = np.zeros((boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8) |
|
|
|
for class_id, boolean_mask in enumerate(boolean_masks): |
|
hue = class_id * 1.0 / len(boolean_masks) |
|
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1)) |
|
rgb_mask = np.zeros((boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8) |
|
rgb_mask[:, :, 0] = boolean_mask * rgb[0] |
|
rgb_mask[:, :, 1] = boolean_mask * rgb[1] |
|
rgb_mask[:, :, 2] = boolean_mask * rgb[2] |
|
finseg += rgb_mask |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return mask, finseg |
|
|
|
def inpaint(image, mask, seg_img, prompt, negative_prompt): |
|
image = Image.fromarray(image) |
|
mask = Image.fromarray(mask) |
|
seg_img = Image.fromarray(seg_img) |
|
|
|
image = image.resize((512, 512)) |
|
mask = mask.resize((512, 512)) |
|
seg_img = seg_img.resize((512, 512)) |
|
|
|
output = pipe( |
|
prompt, |
|
image, |
|
mask, |
|
seg_img, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=20, |
|
).images[0] |
|
torch.cuda.empty_cache() |
|
return output |
|
|
|
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): |
|
sel_pix = [] |
|
img = None |
|
mask = None |
|
seg = None |
|
out = None |
|
prompt = "" |
|
neg_prompt = "" |
|
bg = False |
|
return img, mask, seg, out, prompt, neg_prompt, bg |
|
|
|
input_img.select( |
|
generate_mask, |
|
[input_img, is_background, selected_pixels], |
|
[mask_img, seg_img], |
|
) |
|
submit.click( |
|
inpaint, |
|
inputs=[input_img, mask_img, seg_img, prompt_text, negative_prompt_text], |
|
outputs=[output_img], |
|
) |
|
clear.click( |
|
_clear, |
|
inputs=[ |
|
selected_pixels, |
|
input_img, |
|
mask_img, |
|
seg_img, |
|
output_img, |
|
prompt_text, |
|
negative_prompt_text, |
|
is_background, |
|
], |
|
outputs=[ |
|
input_img, |
|
mask_img, |
|
seg_img, |
|
output_img, |
|
prompt_text, |
|
negative_prompt_text, |
|
is_background, |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|