Spaces:
Running
Running
Merge branch 'feat-refatoracoes-gerais' of https://github.com/luanpoppe/vella-backend into feat-refatoracoes-gerais
Browse files- _utils/resumo_simples_cursor.py +0 -234
_utils/resumo_simples_cursor.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List, Dict, Tuple
|
3 |
-
from setup.easy_imports import (
|
4 |
-
HuggingFaceEmbeddings,
|
5 |
-
PyPDFLoader,
|
6 |
-
Chroma,
|
7 |
-
ChatOpenAI,
|
8 |
-
create_extraction_chain,
|
9 |
-
PromptTemplate,
|
10 |
-
RecursiveCharacterTextSplitter,
|
11 |
-
)
|
12 |
-
from dataclasses import dataclass
|
13 |
-
import uuid
|
14 |
-
import json
|
15 |
-
from langchain_huggingface import HuggingFaceEndpoint
|
16 |
-
from setup.environment import default_model
|
17 |
-
|
18 |
-
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
19 |
-
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
20 |
-
os.environ.get("LANGCHAIN_API_KEY")
|
21 |
-
os.environ["LANGCHAIN_PROJECT"] = "VELLA"
|
22 |
-
|
23 |
-
|
24 |
-
@dataclass
|
25 |
-
class DocumentChunk:
|
26 |
-
content: str
|
27 |
-
page_number: int
|
28 |
-
chunk_id: str
|
29 |
-
start_char: int
|
30 |
-
end_char: int
|
31 |
-
|
32 |
-
|
33 |
-
class DocumentSummarizer:
|
34 |
-
|
35 |
-
def __init__(
|
36 |
-
self, openai_api_key: str, model, embedding, chunk_config, system_prompt
|
37 |
-
):
|
38 |
-
self.model = model
|
39 |
-
self.system_prompt = system_prompt
|
40 |
-
self.openai_api_key = openai_api_key
|
41 |
-
self.embeddings = HuggingFaceEmbeddings(model_name=embedding)
|
42 |
-
self.text_splitter = RecursiveCharacterTextSplitter(
|
43 |
-
chunk_size=chunk_config["size"], chunk_overlap=chunk_config["overlap"]
|
44 |
-
)
|
45 |
-
self.chunk_metadata = {} # Store chunk metadata for tracing
|
46 |
-
|
47 |
-
def load_and_split_document(self, pdf_path: str) -> List[DocumentChunk]:
|
48 |
-
"""Load PDF and split into chunks with metadata"""
|
49 |
-
loader = PyPDFLoader(pdf_path)
|
50 |
-
pages = loader.load()
|
51 |
-
chunks = []
|
52 |
-
char_count = 0
|
53 |
-
|
54 |
-
for page in pages:
|
55 |
-
text = page.page_content
|
56 |
-
# Split the page content
|
57 |
-
page_chunks = self.text_splitter.split_text(text)
|
58 |
-
|
59 |
-
for chunk in page_chunks:
|
60 |
-
chunk_id = str(uuid.uuid4())
|
61 |
-
start_char = text.find(chunk)
|
62 |
-
end_char = start_char + len(chunk)
|
63 |
-
|
64 |
-
doc_chunk = DocumentChunk(
|
65 |
-
content=chunk,
|
66 |
-
page_number=page.metadata.get("page") + 1, # 1-based page numbering
|
67 |
-
chunk_id=chunk_id,
|
68 |
-
start_char=char_count + start_char,
|
69 |
-
end_char=char_count + end_char,
|
70 |
-
)
|
71 |
-
chunks.append(doc_chunk)
|
72 |
-
|
73 |
-
# Store metadata for later retrieval
|
74 |
-
self.chunk_metadata[chunk_id] = {
|
75 |
-
"page": doc_chunk.page_number,
|
76 |
-
"start_char": doc_chunk.start_char,
|
77 |
-
"end_char": doc_chunk.end_char,
|
78 |
-
}
|
79 |
-
|
80 |
-
char_count += len(text)
|
81 |
-
|
82 |
-
return chunks
|
83 |
-
|
84 |
-
def create_vector_store(self, chunks: List[DocumentChunk]) -> Chroma:
|
85 |
-
"""Create vector store with metadata"""
|
86 |
-
texts = [chunk.content for chunk in chunks]
|
87 |
-
metadatas = [
|
88 |
-
{
|
89 |
-
"chunk_id": chunk.chunk_id,
|
90 |
-
"page": chunk.page_number,
|
91 |
-
"start_char": chunk.start_char,
|
92 |
-
"end_char": chunk.end_char,
|
93 |
-
}
|
94 |
-
for chunk in chunks
|
95 |
-
]
|
96 |
-
|
97 |
-
vector_store = Chroma.from_texts(
|
98 |
-
texts=texts, metadatas=metadatas, embedding=self.embeddings
|
99 |
-
)
|
100 |
-
return vector_store
|
101 |
-
|
102 |
-
def generate_summary_with_sources(
|
103 |
-
self,
|
104 |
-
vector_store: Chroma,
|
105 |
-
query: str = "Summarize the main points of this document",
|
106 |
-
) -> List[Dict]:
|
107 |
-
"""Generate summary with source citations, returning structured JSON data"""
|
108 |
-
# Retrieve relevant chunks with metadata
|
109 |
-
relevant_docs = vector_store.similarity_search_with_score(query, k=5)
|
110 |
-
|
111 |
-
# Prepare context and track sources
|
112 |
-
contexts = []
|
113 |
-
sources = []
|
114 |
-
|
115 |
-
for doc, score in relevant_docs:
|
116 |
-
chunk_id = doc.metadata["chunk_id"]
|
117 |
-
context = doc.page_content
|
118 |
-
contexts.append(context)
|
119 |
-
|
120 |
-
sources.append(
|
121 |
-
{
|
122 |
-
"content": context,
|
123 |
-
"page": doc.metadata["page"],
|
124 |
-
"chunk_id": chunk_id,
|
125 |
-
"relevance_score": score,
|
126 |
-
}
|
127 |
-
)
|
128 |
-
|
129 |
-
prompt = PromptTemplate(
|
130 |
-
template=self.system_prompt, input_variables=["context"]
|
131 |
-
)
|
132 |
-
llm = ""
|
133 |
-
|
134 |
-
if self.model == default_model:
|
135 |
-
llm = ChatOpenAI(
|
136 |
-
temperature=0, model_name="gpt-4o-mini", api_key=self.openai_api_key
|
137 |
-
)
|
138 |
-
else:
|
139 |
-
llm = HuggingFaceEndpoint(
|
140 |
-
repo_id=self.model,
|
141 |
-
task="text-generation",
|
142 |
-
max_new_tokens=1100,
|
143 |
-
do_sample=False,
|
144 |
-
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
145 |
-
)
|
146 |
-
|
147 |
-
response = llm.invoke(prompt.format(context="\n\n".join(contexts))).content
|
148 |
-
|
149 |
-
# Split the response into paragraphs
|
150 |
-
summaries = [p.strip() for p in response.split("\n\n") if p.strip()]
|
151 |
-
|
152 |
-
# Create structured output
|
153 |
-
structured_output = []
|
154 |
-
for idx, summary in enumerate(summaries):
|
155 |
-
# Associate each summary with the most relevant source
|
156 |
-
structured_output.append(
|
157 |
-
{
|
158 |
-
"content": summary,
|
159 |
-
"source": {
|
160 |
-
"page": sources[min(idx, len(sources) - 1)]["page"],
|
161 |
-
"text": sources[min(idx, len(sources) - 1)]["content"][:200]
|
162 |
-
+ "...",
|
163 |
-
"relevance_score": sources[min(idx, len(sources) - 1)][
|
164 |
-
"relevance_score"
|
165 |
-
],
|
166 |
-
},
|
167 |
-
}
|
168 |
-
)
|
169 |
-
|
170 |
-
return structured_output
|
171 |
-
|
172 |
-
def get_source_context(self, chunk_id: str, window: int = 100) -> Dict:
|
173 |
-
"""Get extended context around a specific chunk"""
|
174 |
-
metadata = self.chunk_metadata.get(chunk_id)
|
175 |
-
if not metadata:
|
176 |
-
return None
|
177 |
-
|
178 |
-
return {
|
179 |
-
"page": metadata["page"],
|
180 |
-
"start_char": metadata["start_char"],
|
181 |
-
"end_char": metadata["end_char"],
|
182 |
-
}
|
183 |
-
|
184 |
-
|
185 |
-
def get_llm_summary_answer_by_cursor(serializer, listaPDFs):
|
186 |
-
# By Luan
|
187 |
-
allPdfsChunks = []
|
188 |
-
|
189 |
-
# Initialize summarizer
|
190 |
-
summarizer = DocumentSummarizer(
|
191 |
-
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
192 |
-
embedding=serializer["hf_embedding"],
|
193 |
-
chunk_config={
|
194 |
-
"size": serializer["chunk_size"],
|
195 |
-
"overlap": serializer["chunk_overlap"],
|
196 |
-
},
|
197 |
-
system_prompt=serializer["system_prompt"],
|
198 |
-
model=serializer["model"],
|
199 |
-
)
|
200 |
-
|
201 |
-
# Load and process document
|
202 |
-
for pdf in listaPDFs:
|
203 |
-
pdf_path = pdf
|
204 |
-
chunks = summarizer.load_and_split_document(pdf_path)
|
205 |
-
allPdfsChunks = allPdfsChunks + chunks
|
206 |
-
|
207 |
-
vector_store = summarizer.create_vector_store(allPdfsChunks)
|
208 |
-
|
209 |
-
# Generate structured summary
|
210 |
-
structured_summaries = summarizer.generate_summary_with_sources(vector_store)
|
211 |
-
|
212 |
-
# Print or return the structured data
|
213 |
-
# print(structured_summaries)
|
214 |
-
json_data = json.dumps(structured_summaries)
|
215 |
-
print("\n\n")
|
216 |
-
print(json_data)
|
217 |
-
return structured_summaries
|
218 |
-
# If you need to send to frontend, you can just return structured_summaries
|
219 |
-
# It will be in the format:
|
220 |
-
# [
|
221 |
-
# {
|
222 |
-
# "content": "Summary point 1...",
|
223 |
-
# "source": {
|
224 |
-
# "page": 1,
|
225 |
-
# "text": "Source text...",
|
226 |
-
# "relevance_score": 0.95
|
227 |
-
# }
|
228 |
-
# },
|
229 |
-
# ...
|
230 |
-
# ]
|
231 |
-
|
232 |
-
|
233 |
-
if __name__ == "__main__":
|
234 |
-
get_llm_summary_answer_by_cursor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|