Spaces:
Running
Running
luanpoppe
commited on
Commit
·
e5550d4
1
Parent(s):
5acd42c
feat: adicionando temperatura enviada no front para as chamadas do gemini
Browse files
_utils/gerar_documento_utils/GerarDocumento.py
CHANGED
@@ -166,11 +166,17 @@ class GerarDocumentoUtils:
|
|
166 |
elif llm_ultimas_requests == "deepseek-chat":
|
167 |
llm = llm_instance.deepseek()
|
168 |
elif llm_ultimas_requests == "gemini-2.0-flash":
|
169 |
-
llm = llm_instance.google_gemini(
|
|
|
|
|
170 |
elif llm_ultimas_requests == "gemini-2.5-pro":
|
171 |
-
llm = llm_instance.google_gemini(
|
|
|
|
|
172 |
elif llm_ultimas_requests == "gemini-2.5-flash":
|
173 |
-
llm = llm_instance.google_gemini(
|
|
|
|
|
174 |
return llm
|
175 |
|
176 |
|
@@ -204,12 +210,13 @@ class GerarDocumento:
|
|
204 |
axiom_instance: Axiom,
|
205 |
):
|
206 |
self.gerar_documento_utils = GerarDocumentoUtils(axiom_instance)
|
|
|
207 |
self.config = self.gerar_documento_utils.create_retrieval_config(serializer)
|
208 |
self.serializer = serializer
|
209 |
self.logger = logging.getLogger(__name__)
|
210 |
# self.prompt_auxiliar = prompt_auxiliar
|
211 |
self.gpt_model = serializer.model
|
212 |
-
self.
|
213 |
self.prompt_gerar_documento = serializer.prompt_gerar_documento
|
214 |
self.should_use_llama_parse = serializer.should_use_llama_parse
|
215 |
self.isBubble = isBubble
|
@@ -274,7 +281,9 @@ class GerarDocumento:
|
|
274 |
"COMEÇANDO REQUISIÇÃO PARA GERAR O QUERY DINAMICAMENTE DO VECTOR STORE"
|
275 |
)
|
276 |
response = await self.llm.google_gemini_ainvoke(
|
277 |
-
prompt_para_gerar_query_dinamico,
|
|
|
|
|
278 |
)
|
279 |
|
280 |
self.query_gerado_dinamicamente_para_o_vector_store = cast(
|
@@ -410,7 +419,7 @@ class GerarDocumento:
|
|
410 |
)
|
411 |
|
412 |
self.gerar_documento_utils.model = self.gpt_model
|
413 |
-
self.gerar_documento_utils.temperature = self.
|
414 |
documento_gerado = await self.gerar_documento_utils.checar_se_resposta_vazia_do_documento_final(
|
415 |
llm_ultimas_requests, prompt_primeira_etapa
|
416 |
)
|
@@ -493,7 +502,9 @@ class GerarDocumento:
|
|
493 |
resumo_para_gerar_titulo = self.texto_completo_como_html
|
494 |
|
495 |
prompt = prompt_para_gerar_titulo(resumo_para_gerar_titulo)
|
496 |
-
response = await agemini_answer(
|
|
|
|
|
497 |
self.titulo_do_documento = response
|
498 |
return self.titulo_do_documento
|
499 |
|
@@ -578,9 +589,9 @@ class GerarDocumento:
|
|
578 |
)
|
579 |
|
580 |
prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
|
581 |
-
response = await llms.google_gemini(
|
582 |
-
|
583 |
-
)
|
584 |
responses.append(response.content)
|
585 |
|
586 |
# Start new chunk with current part
|
@@ -599,9 +610,9 @@ class GerarDocumento:
|
|
599 |
f"\nProcessing final chunk {chunk_counter} with {current_token_count} tokens"
|
600 |
)
|
601 |
prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
|
602 |
-
response = await llms.google_gemini(
|
603 |
-
|
604 |
-
)
|
605 |
responses.append(response.content)
|
606 |
|
607 |
self.resumo_auxiliar = "".join(responses)
|
|
|
166 |
elif llm_ultimas_requests == "deepseek-chat":
|
167 |
llm = llm_instance.deepseek()
|
168 |
elif llm_ultimas_requests == "gemini-2.0-flash":
|
169 |
+
llm = llm_instance.google_gemini(
|
170 |
+
"gemini-2.0-flash", temperature=self.temperature
|
171 |
+
)
|
172 |
elif llm_ultimas_requests == "gemini-2.5-pro":
|
173 |
+
llm = llm_instance.google_gemini(
|
174 |
+
"gemini-2.5-pro-preview-05-06", temperature=self.temperature
|
175 |
+
)
|
176 |
elif llm_ultimas_requests == "gemini-2.5-flash":
|
177 |
+
llm = llm_instance.google_gemini(
|
178 |
+
"gemini-2.5-flash-preview-04-17", temperature=self.temperature
|
179 |
+
)
|
180 |
return llm
|
181 |
|
182 |
|
|
|
210 |
axiom_instance: Axiom,
|
211 |
):
|
212 |
self.gerar_documento_utils = GerarDocumentoUtils(axiom_instance)
|
213 |
+
self.gerar_documento_utils.temperature = serializer.gpt_temperature
|
214 |
self.config = self.gerar_documento_utils.create_retrieval_config(serializer)
|
215 |
self.serializer = serializer
|
216 |
self.logger = logging.getLogger(__name__)
|
217 |
# self.prompt_auxiliar = prompt_auxiliar
|
218 |
self.gpt_model = serializer.model
|
219 |
+
self.llm_temperature = serializer.gpt_temperature
|
220 |
self.prompt_gerar_documento = serializer.prompt_gerar_documento
|
221 |
self.should_use_llama_parse = serializer.should_use_llama_parse
|
222 |
self.isBubble = isBubble
|
|
|
281 |
"COMEÇANDO REQUISIÇÃO PARA GERAR O QUERY DINAMICAMENTE DO VECTOR STORE"
|
282 |
)
|
283 |
response = await self.llm.google_gemini_ainvoke(
|
284 |
+
prompt_para_gerar_query_dinamico,
|
285 |
+
"gemini-2.0-flash",
|
286 |
+
temperature=self.llm_temperature,
|
287 |
)
|
288 |
|
289 |
self.query_gerado_dinamicamente_para_o_vector_store = cast(
|
|
|
419 |
)
|
420 |
|
421 |
self.gerar_documento_utils.model = self.gpt_model
|
422 |
+
self.gerar_documento_utils.temperature = self.llm_temperature
|
423 |
documento_gerado = await self.gerar_documento_utils.checar_se_resposta_vazia_do_documento_final(
|
424 |
llm_ultimas_requests, prompt_primeira_etapa
|
425 |
)
|
|
|
502 |
resumo_para_gerar_titulo = self.texto_completo_como_html
|
503 |
|
504 |
prompt = prompt_para_gerar_titulo(resumo_para_gerar_titulo)
|
505 |
+
response = await agemini_answer(
|
506 |
+
prompt, "gemini-2.0-flash-lite", temperature=self.llm_temperature
|
507 |
+
)
|
508 |
self.titulo_do_documento = response
|
509 |
return self.titulo_do_documento
|
510 |
|
|
|
589 |
)
|
590 |
|
591 |
prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
|
592 |
+
response = await llms.google_gemini(
|
593 |
+
temperature=self.llm_temperature
|
594 |
+
).ainvoke([HumanMessage(content=prompt)])
|
595 |
responses.append(response.content)
|
596 |
|
597 |
# Start new chunk with current part
|
|
|
610 |
f"\nProcessing final chunk {chunk_counter} with {current_token_count} tokens"
|
611 |
)
|
612 |
prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
|
613 |
+
response = await llms.google_gemini(
|
614 |
+
temperature=self.llm_temperature
|
615 |
+
).ainvoke([HumanMessage(content=prompt)])
|
616 |
responses.append(response.content)
|
617 |
|
618 |
self.resumo_auxiliar = "".join(responses)
|
_utils/gerar_documento_utils/llm_calls.py
CHANGED
@@ -62,8 +62,9 @@ async def agemini_answer(
|
|
62 |
model: Literal[
|
63 |
"gemini-2.5-pro-preview-05-06", "gemini-2.0-flash", "gemini-2.0-flash-lite"
|
64 |
] = "gemini-2.0-flash",
|
|
|
65 |
) -> str:
|
66 |
-
gemini = llm.google_gemini(model)
|
67 |
resposta = await gemini.ainvoke([HumanMessage(content=prompt)])
|
68 |
|
69 |
if isinstance(resposta.content, list):
|
|
|
62 |
model: Literal[
|
63 |
"gemini-2.5-pro-preview-05-06", "gemini-2.0-flash", "gemini-2.0-flash-lite"
|
64 |
] = "gemini-2.0-flash",
|
65 |
+
temperature=0.4,
|
66 |
) -> str:
|
67 |
+
gemini = llm.google_gemini(model, temperature)
|
68 |
resposta = await gemini.ainvoke([HumanMessage(content=prompt)])
|
69 |
|
70 |
if isinstance(resposta.content, list):
|
_utils/langchain_utils/LLM_class.py
CHANGED
@@ -32,14 +32,11 @@ class LLM:
|
|
32 |
model=model,
|
33 |
)
|
34 |
|
35 |
-
def google_gemini(
|
36 |
-
self,
|
37 |
-
model: Google_llms = "gemini-2.0-flash",
|
38 |
-
):
|
39 |
return ChatGoogleGenerativeAI(
|
40 |
api_key=SecretStr(google_api_key),
|
41 |
model=model,
|
42 |
-
temperature=
|
43 |
max_tokens=None,
|
44 |
timeout=None,
|
45 |
max_retries=2,
|
@@ -50,10 +47,11 @@ class LLM:
|
|
50 |
prompt: str,
|
51 |
model: Google_llms = "gemini-2.0-flash",
|
52 |
max_retries: int = 3,
|
|
|
53 |
):
|
54 |
for attempt in range(max_retries):
|
55 |
try:
|
56 |
-
response = await self.google_gemini(model).ainvoke(
|
57 |
[HumanMessage(content=prompt)]
|
58 |
)
|
59 |
|
|
|
32 |
model=model,
|
33 |
)
|
34 |
|
35 |
+
def google_gemini(self, model: Google_llms = "gemini-2.0-flash", temperature=0.4):
|
|
|
|
|
|
|
36 |
return ChatGoogleGenerativeAI(
|
37 |
api_key=SecretStr(google_api_key),
|
38 |
model=model,
|
39 |
+
temperature=temperature,
|
40 |
max_tokens=None,
|
41 |
timeout=None,
|
42 |
max_retries=2,
|
|
|
47 |
prompt: str,
|
48 |
model: Google_llms = "gemini-2.0-flash",
|
49 |
max_retries: int = 3,
|
50 |
+
temperature=0.4,
|
51 |
):
|
52 |
for attempt in range(max_retries):
|
53 |
try:
|
54 |
+
response = await self.google_gemini(model, temperature).ainvoke(
|
55 |
[HumanMessage(content=prompt)]
|
56 |
)
|
57 |
|