luanpoppe commited on
Commit
e5550d4
·
1 Parent(s): 5acd42c

feat: adicionando temperatura enviada no front para as chamadas do gemini

Browse files
_utils/gerar_documento_utils/GerarDocumento.py CHANGED
@@ -166,11 +166,17 @@ class GerarDocumentoUtils:
166
  elif llm_ultimas_requests == "deepseek-chat":
167
  llm = llm_instance.deepseek()
168
  elif llm_ultimas_requests == "gemini-2.0-flash":
169
- llm = llm_instance.google_gemini("gemini-2.0-flash")
 
 
170
  elif llm_ultimas_requests == "gemini-2.5-pro":
171
- llm = llm_instance.google_gemini("gemini-2.5-pro-preview-05-06")
 
 
172
  elif llm_ultimas_requests == "gemini-2.5-flash":
173
- llm = llm_instance.google_gemini("gemini-2.5-flash-preview-04-17")
 
 
174
  return llm
175
 
176
 
@@ -204,12 +210,13 @@ class GerarDocumento:
204
  axiom_instance: Axiom,
205
  ):
206
  self.gerar_documento_utils = GerarDocumentoUtils(axiom_instance)
 
207
  self.config = self.gerar_documento_utils.create_retrieval_config(serializer)
208
  self.serializer = serializer
209
  self.logger = logging.getLogger(__name__)
210
  # self.prompt_auxiliar = prompt_auxiliar
211
  self.gpt_model = serializer.model
212
- self.gpt_temperature = serializer.gpt_temperature
213
  self.prompt_gerar_documento = serializer.prompt_gerar_documento
214
  self.should_use_llama_parse = serializer.should_use_llama_parse
215
  self.isBubble = isBubble
@@ -274,7 +281,9 @@ class GerarDocumento:
274
  "COMEÇANDO REQUISIÇÃO PARA GERAR O QUERY DINAMICAMENTE DO VECTOR STORE"
275
  )
276
  response = await self.llm.google_gemini_ainvoke(
277
- prompt_para_gerar_query_dinamico, "gemini-2.0-flash"
 
 
278
  )
279
 
280
  self.query_gerado_dinamicamente_para_o_vector_store = cast(
@@ -410,7 +419,7 @@ class GerarDocumento:
410
  )
411
 
412
  self.gerar_documento_utils.model = self.gpt_model
413
- self.gerar_documento_utils.temperature = self.gpt_temperature
414
  documento_gerado = await self.gerar_documento_utils.checar_se_resposta_vazia_do_documento_final(
415
  llm_ultimas_requests, prompt_primeira_etapa
416
  )
@@ -493,7 +502,9 @@ class GerarDocumento:
493
  resumo_para_gerar_titulo = self.texto_completo_como_html
494
 
495
  prompt = prompt_para_gerar_titulo(resumo_para_gerar_titulo)
496
- response = await agemini_answer(prompt, "gemini-2.0-flash-lite")
 
 
497
  self.titulo_do_documento = response
498
  return self.titulo_do_documento
499
 
@@ -578,9 +589,9 @@ class GerarDocumento:
578
  )
579
 
580
  prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
581
- response = await llms.google_gemini().ainvoke(
582
- [HumanMessage(content=prompt)]
583
- )
584
  responses.append(response.content)
585
 
586
  # Start new chunk with current part
@@ -599,9 +610,9 @@ class GerarDocumento:
599
  f"\nProcessing final chunk {chunk_counter} with {current_token_count} tokens"
600
  )
601
  prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
602
- response = await llms.google_gemini().ainvoke(
603
- [HumanMessage(content=prompt)]
604
- )
605
  responses.append(response.content)
606
 
607
  self.resumo_auxiliar = "".join(responses)
 
166
  elif llm_ultimas_requests == "deepseek-chat":
167
  llm = llm_instance.deepseek()
168
  elif llm_ultimas_requests == "gemini-2.0-flash":
169
+ llm = llm_instance.google_gemini(
170
+ "gemini-2.0-flash", temperature=self.temperature
171
+ )
172
  elif llm_ultimas_requests == "gemini-2.5-pro":
173
+ llm = llm_instance.google_gemini(
174
+ "gemini-2.5-pro-preview-05-06", temperature=self.temperature
175
+ )
176
  elif llm_ultimas_requests == "gemini-2.5-flash":
177
+ llm = llm_instance.google_gemini(
178
+ "gemini-2.5-flash-preview-04-17", temperature=self.temperature
179
+ )
180
  return llm
181
 
182
 
 
210
  axiom_instance: Axiom,
211
  ):
212
  self.gerar_documento_utils = GerarDocumentoUtils(axiom_instance)
213
+ self.gerar_documento_utils.temperature = serializer.gpt_temperature
214
  self.config = self.gerar_documento_utils.create_retrieval_config(serializer)
215
  self.serializer = serializer
216
  self.logger = logging.getLogger(__name__)
217
  # self.prompt_auxiliar = prompt_auxiliar
218
  self.gpt_model = serializer.model
219
+ self.llm_temperature = serializer.gpt_temperature
220
  self.prompt_gerar_documento = serializer.prompt_gerar_documento
221
  self.should_use_llama_parse = serializer.should_use_llama_parse
222
  self.isBubble = isBubble
 
281
  "COMEÇANDO REQUISIÇÃO PARA GERAR O QUERY DINAMICAMENTE DO VECTOR STORE"
282
  )
283
  response = await self.llm.google_gemini_ainvoke(
284
+ prompt_para_gerar_query_dinamico,
285
+ "gemini-2.0-flash",
286
+ temperature=self.llm_temperature,
287
  )
288
 
289
  self.query_gerado_dinamicamente_para_o_vector_store = cast(
 
419
  )
420
 
421
  self.gerar_documento_utils.model = self.gpt_model
422
+ self.gerar_documento_utils.temperature = self.llm_temperature
423
  documento_gerado = await self.gerar_documento_utils.checar_se_resposta_vazia_do_documento_final(
424
  llm_ultimas_requests, prompt_primeira_etapa
425
  )
 
502
  resumo_para_gerar_titulo = self.texto_completo_como_html
503
 
504
  prompt = prompt_para_gerar_titulo(resumo_para_gerar_titulo)
505
+ response = await agemini_answer(
506
+ prompt, "gemini-2.0-flash-lite", temperature=self.llm_temperature
507
+ )
508
  self.titulo_do_documento = response
509
  return self.titulo_do_documento
510
 
 
589
  )
590
 
591
  prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
592
+ response = await llms.google_gemini(
593
+ temperature=self.llm_temperature
594
+ ).ainvoke([HumanMessage(content=prompt)])
595
  responses.append(response.content)
596
 
597
  # Start new chunk with current part
 
610
  f"\nProcessing final chunk {chunk_counter} with {current_token_count} tokens"
611
  )
612
  prompt = create_prompt_auxiliar_do_contextual_prompt(chunk_text)
613
+ response = await llms.google_gemini(
614
+ temperature=self.llm_temperature
615
+ ).ainvoke([HumanMessage(content=prompt)])
616
  responses.append(response.content)
617
 
618
  self.resumo_auxiliar = "".join(responses)
_utils/gerar_documento_utils/llm_calls.py CHANGED
@@ -62,8 +62,9 @@ async def agemini_answer(
62
  model: Literal[
63
  "gemini-2.5-pro-preview-05-06", "gemini-2.0-flash", "gemini-2.0-flash-lite"
64
  ] = "gemini-2.0-flash",
 
65
  ) -> str:
66
- gemini = llm.google_gemini(model)
67
  resposta = await gemini.ainvoke([HumanMessage(content=prompt)])
68
 
69
  if isinstance(resposta.content, list):
 
62
  model: Literal[
63
  "gemini-2.5-pro-preview-05-06", "gemini-2.0-flash", "gemini-2.0-flash-lite"
64
  ] = "gemini-2.0-flash",
65
+ temperature=0.4,
66
  ) -> str:
67
+ gemini = llm.google_gemini(model, temperature)
68
  resposta = await gemini.ainvoke([HumanMessage(content=prompt)])
69
 
70
  if isinstance(resposta.content, list):
_utils/langchain_utils/LLM_class.py CHANGED
@@ -32,14 +32,11 @@ class LLM:
32
  model=model,
33
  )
34
 
35
- def google_gemini(
36
- self,
37
- model: Google_llms = "gemini-2.0-flash",
38
- ):
39
  return ChatGoogleGenerativeAI(
40
  api_key=SecretStr(google_api_key),
41
  model=model,
42
- temperature=0,
43
  max_tokens=None,
44
  timeout=None,
45
  max_retries=2,
@@ -50,10 +47,11 @@ class LLM:
50
  prompt: str,
51
  model: Google_llms = "gemini-2.0-flash",
52
  max_retries: int = 3,
 
53
  ):
54
  for attempt in range(max_retries):
55
  try:
56
- response = await self.google_gemini(model).ainvoke(
57
  [HumanMessage(content=prompt)]
58
  )
59
 
 
32
  model=model,
33
  )
34
 
35
+ def google_gemini(self, model: Google_llms = "gemini-2.0-flash", temperature=0.4):
 
 
 
36
  return ChatGoogleGenerativeAI(
37
  api_key=SecretStr(google_api_key),
38
  model=model,
39
+ temperature=temperature,
40
  max_tokens=None,
41
  timeout=None,
42
  max_retries=2,
 
47
  prompt: str,
48
  model: Google_llms = "gemini-2.0-flash",
49
  max_retries: int = 3,
50
+ temperature=0.4,
51
  ):
52
  for attempt in range(max_retries):
53
  try:
54
+ response = await self.google_gemini(model, temperature).ainvoke(
55
  [HumanMessage(content=prompt)]
56
  )
57