Spaces:
Running
Running
Merge branch 'tests' of https://github.com/luanpoppe/vella-backend into feat-refatoracoes-gerais
Browse files- .env.example +3 -1
- Dockerfile +8 -0
- _utils/gerar_documento_utils/GerarDocumento.py +1 -1
- _utils/gerar_documento_utils/prompts.py +12 -5
- _utils/google_integration/google_cloud.py +28 -0
- _utils/langchain_utils/LLM_class.py +44 -2
- _utils/langchain_utils/Splitter_class.py +150 -1
- _utils/langchain_utils/Vector_store_class.py +7 -1
- entrypoint.sh +26 -0
- requirements.txt +0 -0
.env.example
CHANGED
@@ -11,4 +11,6 @@ LLAMA_CLOUD_API_KEY_PEIXE=""
|
|
11 |
DEEPSEEKK_API_KEY=""
|
12 |
GOOGLE_API_KEY_PEIXE=""
|
13 |
SENTRY_DSN=""
|
14 |
-
AMBIENTE="testes"
|
|
|
|
|
|
11 |
DEEPSEEKK_API_KEY=""
|
12 |
GOOGLE_API_KEY_PEIXE=""
|
13 |
SENTRY_DSN=""
|
14 |
+
AMBIENTE="testes"
|
15 |
+
GOOGLE_APPLICATION_CREDENTIALS="" # Só é necessário em ambiente de desenvolvimento que não esteja usando docker
|
16 |
+
GCP_CREDENTIALS_JSON_CONTENT="Conteúdo inteiro do arquivo vella_gcp_luan_credentials.json" # Em produção, tem que conter todo o conteúdo do arquivo de credentials. Localmente, não precisa existir
|
Dockerfile
CHANGED
@@ -3,6 +3,10 @@ FROM python:3.12
|
|
3 |
# Instalação necessária para converter arquivos .doc
|
4 |
RUN apt-get update && apt-get install -y antiword
|
5 |
|
|
|
|
|
|
|
|
|
6 |
RUN useradd -m -u 1000 user
|
7 |
USER user
|
8 |
ENV PATH="/home/user/.local/bin:$PATH"
|
@@ -23,6 +27,10 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
23 |
RUN python manage.py collectstatic --noinput
|
24 |
|
25 |
RUN pip install uvicorn
|
|
|
|
|
|
|
|
|
26 |
CMD ["uvicorn", "setup.asgi:application", "--host", "0.0.0.0", "--port", "7860"]
|
27 |
|
28 |
# ENTRYPOINT ["python", "manage.py", "runserver"]
|
|
|
3 |
# Instalação necessária para converter arquivos .doc
|
4 |
RUN apt-get update && apt-get install -y antiword
|
5 |
|
6 |
+
# Copy the entrypoint script and make it executable
|
7 |
+
COPY entrypoint.sh /entrypoint.sh
|
8 |
+
RUN chmod +x /entrypoint.sh
|
9 |
+
|
10 |
RUN useradd -m -u 1000 user
|
11 |
USER user
|
12 |
ENV PATH="/home/user/.local/bin:$PATH"
|
|
|
27 |
RUN python manage.py collectstatic --noinput
|
28 |
|
29 |
RUN pip install uvicorn
|
30 |
+
|
31 |
+
# Set the entrypoint to our script
|
32 |
+
ENTRYPOINT ["/entrypoint.sh"]
|
33 |
+
|
34 |
CMD ["uvicorn", "setup.asgi:application", "--host", "0.0.0.0", "--port", "7860"]
|
35 |
|
36 |
# ENTRYPOINT ["python", "manage.py", "runserver"]
|
_utils/gerar_documento_utils/GerarDocumento.py
CHANGED
@@ -13,7 +13,7 @@ from _utils.gerar_documento_utils.prompts import (
|
|
13 |
prompt_para_gerar_titulo,
|
14 |
)
|
15 |
from _utils.langchain_utils.Chain_class import Chain
|
16 |
-
from _utils.langchain_utils.LLM_class import LLM
|
17 |
from _utils.langchain_utils.Prompt_class import Prompt
|
18 |
from _utils.langchain_utils.Vector_store_class import VectorStore
|
19 |
from _utils.utils import convert_markdown_to_HTML
|
|
|
13 |
prompt_para_gerar_titulo,
|
14 |
)
|
15 |
from _utils.langchain_utils.Chain_class import Chain
|
16 |
+
from _utils.langchain_utils.LLM_class import LLM, Google_llms
|
17 |
from _utils.langchain_utils.Prompt_class import Prompt
|
18 |
from _utils.langchain_utils.Vector_store_class import VectorStore
|
19 |
from _utils.utils import convert_markdown_to_HTML
|
_utils/gerar_documento_utils/prompts.py
CHANGED
@@ -1,4 +1,14 @@
|
|
1 |
-
def create_prompt_auxiliar_do_contextual_prompt(PROCESSO_JURIDICO: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
return f"""
|
3 |
<prompt>
|
4 |
<persona>
|
@@ -46,10 +56,7 @@ Seu objetivo é analisar o processo jurídico fornecido e gerar um relatório co
|
|
46 |
<instrucoes>
|
47 |
Siga estritamente os passos abaixo:
|
48 |
|
49 |
-
|
50 |
-
<processo_juridico>
|
51 |
-
{PROCESSO_JURIDICO}
|
52 |
-
</processo_juridico>
|
53 |
|
54 |
2. **Identificação e Listagem de Peças:** Identifique quais das peças listadas na `<tarefa>` estão presentes no texto. Liste **apenas** as encontradas na tag `<pecas_identificadas>`.
|
55 |
|
|
|
1 |
+
def create_prompt_auxiliar_do_contextual_prompt(PROCESSO_JURIDICO: str | None = None):
|
2 |
+
if PROCESSO_JURIDICO:
|
3 |
+
adicionar_ao_prompt = f"""
|
4 |
+
1. **Análise Completa:** Leia e analise todo o conteúdo do processo fornecido.
|
5 |
+
<processo_juridico>
|
6 |
+
{PROCESSO_JURIDICO}
|
7 |
+
</processo_juridico>"""
|
8 |
+
else:
|
9 |
+
adicionar_ao_prompt = """
|
10 |
+
1. **Análise Completa:** Leia e analise todo o conteúdo do processo fornecido como PDF."""
|
11 |
+
|
12 |
return f"""
|
13 |
<prompt>
|
14 |
<persona>
|
|
|
56 |
<instrucoes>
|
57 |
Siga estritamente os passos abaixo:
|
58 |
|
59 |
+
{adicionar_ao_prompt}
|
|
|
|
|
|
|
60 |
|
61 |
2. **Identificação e Listagem de Peças:** Identifique quais das peças listadas na `<tarefa>` estão presentes no texto. Liste **apenas** as encontradas na tag `<pecas_identificadas>`.
|
62 |
|
_utils/google_integration/google_cloud.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from google.cloud import storage
|
3 |
+
|
4 |
+
GCP_PROJECT = "gen-lang-client-0350149082"
|
5 |
+
GCP_REGION = "us-central1"
|
6 |
+
DOCUMENT_API_ID = "b34a20d22dee16bb"
|
7 |
+
GCS_BUCKET_NAME = "vella-pdfs"
|
8 |
+
|
9 |
+
|
10 |
+
def upload_to_gcs(LOCAL_PDF_PATH: str) -> str:
|
11 |
+
|
12 |
+
# Path in GCS
|
13 |
+
GCS_DESTINATION_BLOB_NAME = "gemini_uploads/" + os.path.basename(LOCAL_PDF_PATH)
|
14 |
+
|
15 |
+
"""Uploads a file to a GCS bucket and returns its URI."""
|
16 |
+
storage_client = storage.Client(
|
17 |
+
project=GCP_PROJECT,
|
18 |
+
)
|
19 |
+
bucket = storage_client.bucket(GCS_BUCKET_NAME)
|
20 |
+
blob = bucket.blob(GCS_DESTINATION_BLOB_NAME)
|
21 |
+
|
22 |
+
print(
|
23 |
+
f"Uploading {LOCAL_PDF_PATH} to gs://{GCS_BUCKET_NAME}/{GCS_DESTINATION_BLOB_NAME}..."
|
24 |
+
)
|
25 |
+
blob.upload_from_filename(LOCAL_PDF_PATH)
|
26 |
+
gcs_uri = f"gs://{GCS_BUCKET_NAME}/{GCS_DESTINATION_BLOB_NAME}"
|
27 |
+
print(f"File uploaded to {gcs_uri}")
|
28 |
+
return gcs_uri
|
_utils/langchain_utils/LLM_class.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
from typing import Literal, cast
|
2 |
from pydantic import SecretStr
|
3 |
-
from
|
4 |
from setup.easy_imports import ChatOpenAI, ChatGoogleGenerativeAI
|
5 |
import os
|
6 |
from langchain_core.messages import HumanMessage
|
|
|
7 |
|
8 |
deepseek_api_key = cast(str, os.environ.get("DEEPSEEKK_API_KEY"))
|
9 |
google_api_key = cast(str, os.environ.get("GOOGLE_API_KEY_PEIXE"))
|
@@ -75,3 +76,44 @@ class LLM:
|
|
75 |
raise Exception(
|
76 |
"Failed to generate the final document after 5 retries and the fallback attempt with chat-gpt-4o-mini."
|
77 |
) from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, cast
|
2 |
from pydantic import SecretStr
|
3 |
+
from _utils.google_integration.google_cloud import GCP_PROJECT, upload_to_gcs
|
4 |
from setup.easy_imports import ChatOpenAI, ChatGoogleGenerativeAI
|
5 |
import os
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
+
from langchain_google_vertexai import ChatVertexAI
|
8 |
|
9 |
deepseek_api_key = cast(str, os.environ.get("DEEPSEEKK_API_KEY"))
|
10 |
google_api_key = cast(str, os.environ.get("GOOGLE_API_KEY_PEIXE"))
|
|
|
76 |
raise Exception(
|
77 |
"Failed to generate the final document after 5 retries and the fallback attempt with chat-gpt-4o-mini."
|
78 |
) from e
|
79 |
+
|
80 |
+
async def google_gemini_vertex_ainvoke(
|
81 |
+
self,
|
82 |
+
prompt: str,
|
83 |
+
list_of_pdfs: List[str],
|
84 |
+
model: Google_llms = "gemini-2.5-flash-preview-04-17",
|
85 |
+
max_retries: int = 3,
|
86 |
+
) -> str | None:
|
87 |
+
message_parts = [
|
88 |
+
{"type": "text", "text": prompt},
|
89 |
+
]
|
90 |
+
for pdf in list_of_pdfs:
|
91 |
+
pdf_gcs_uri = upload_to_gcs(pdf)
|
92 |
+
message_parts.append(
|
93 |
+
{
|
94 |
+
# This structure is used for file references via URI
|
95 |
+
"type": "media",
|
96 |
+
"mime_type": "application/pdf", # <-- mime_type moved up
|
97 |
+
"file_uri": pdf_gcs_uri, # <-- file_uri moved up
|
98 |
+
}
|
99 |
+
)
|
100 |
+
|
101 |
+
for attempt in range(max_retries):
|
102 |
+
try:
|
103 |
+
llm = ChatVertexAI(
|
104 |
+
model_name=model,
|
105 |
+
project=GCP_PROJECT,
|
106 |
+
location="us-central1",
|
107 |
+
temperature=0,
|
108 |
+
)
|
109 |
+
response = await llm.ainvoke(
|
110 |
+
[HumanMessage(content=message_parts)] # type: ignore
|
111 |
+
)
|
112 |
+
|
113 |
+
if isinstance(response.content, list):
|
114 |
+
response.content = "\n".join(response.content) # type: ignore
|
115 |
+
|
116 |
+
return response.content # type: ignore
|
117 |
+
except Exception as e:
|
118 |
+
model = "gemini-2.0-flash"
|
119 |
+
print(f"Attempt {attempt + 1} failed with error: {e}")
|
_utils/langchain_utils/Splitter_class.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
from _utils.bubble_integrations.obter_arquivo import get_pdf_from_bubble
|
2 |
from _utils.handle_files import return_document_list_with_llama_parser
|
3 |
from _utils.langchain_utils.splitter_util import (
|
@@ -18,6 +20,16 @@ from _utils.models.gerar_documento import (
|
|
18 |
DocumentChunk,
|
19 |
)
|
20 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
class Splitter:
|
@@ -34,7 +46,10 @@ class Splitter:
|
|
34 |
self.chunk_metadata = {} # Store chunk metadata for tracing
|
35 |
|
36 |
async def load_and_split_document(
|
37 |
-
self,
|
|
|
|
|
|
|
38 |
):
|
39 |
"""Load PDF and split into chunks with metadata"""
|
40 |
# loader = PyPDFLoader(pdf_path)
|
@@ -144,6 +159,11 @@ class Splitter:
|
|
144 |
# char_count += len(text)
|
145 |
print("TERMINOU DE ORGANIZAR PDFS EM CHUNKS")
|
146 |
|
|
|
|
|
|
|
|
|
|
|
147 |
return chunks, chunks_of_string_only
|
148 |
|
149 |
def load_and_split_text(self, text: str) -> List[DocumentChunk]:
|
@@ -185,3 +205,132 @@ class Splitter:
|
|
185 |
char_count += len(text)
|
186 |
|
187 |
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
from _utils.bubble_integrations.obter_arquivo import get_pdf_from_bubble
|
4 |
from _utils.handle_files import return_document_list_with_llama_parser
|
5 |
from _utils.langchain_utils.splitter_util import (
|
|
|
20 |
DocumentChunk,
|
21 |
)
|
22 |
import uuid
|
23 |
+
import json
|
24 |
+
from _utils.google_integration.google_cloud import (
|
25 |
+
DOCUMENT_API_ID,
|
26 |
+
GCP_PROJECT,
|
27 |
+
GCP_REGION,
|
28 |
+
GCS_BUCKET_NAME,
|
29 |
+
upload_to_gcs,
|
30 |
+
)
|
31 |
+
from google.cloud import documentai
|
32 |
+
from google.cloud import storage
|
33 |
|
34 |
|
35 |
class Splitter:
|
|
|
46 |
self.chunk_metadata = {} # Store chunk metadata for tracing
|
47 |
|
48 |
async def load_and_split_document(
|
49 |
+
self,
|
50 |
+
pdf_path: str,
|
51 |
+
should_use_llama_parse: bool,
|
52 |
+
isBubble: bool,
|
53 |
):
|
54 |
"""Load PDF and split into chunks with metadata"""
|
55 |
# loader = PyPDFLoader(pdf_path)
|
|
|
159 |
# char_count += len(text)
|
160 |
print("TERMINOU DE ORGANIZAR PDFS EM CHUNKS")
|
161 |
|
162 |
+
if len(pages) == 0 or len(chunks) == 0:
|
163 |
+
text = await self.getOCRFromGoogleDocumentAPI(pdf_path)
|
164 |
+
chunks = self.load_and_split_text(text) # type: ignore
|
165 |
+
chunks_of_string_only = [chunk.content for chunk in chunks]
|
166 |
+
|
167 |
return chunks, chunks_of_string_only
|
168 |
|
169 |
def load_and_split_text(self, text: str) -> List[DocumentChunk]:
|
|
|
205 |
char_count += len(text)
|
206 |
|
207 |
return chunks
|
208 |
+
|
209 |
+
async def getOCRFromGoogleDocumentAPI(self, pdf_path: str):
|
210 |
+
|
211 |
+
pdf_gcs_uri = upload_to_gcs(pdf_path)
|
212 |
+
|
213 |
+
GCS_OUTPUT_PREFIX = "documentai_output/"
|
214 |
+
# GCS_INPUT_URI = f"gs://{GCS_BUCKET_NAME}/{f"gemini_uploads/{pdf_gcs_uri}"}"
|
215 |
+
GCS_INPUT_URI = pdf_gcs_uri
|
216 |
+
GCS_OUTPUT_URI = f"gs://{GCS_BUCKET_NAME}/{GCS_OUTPUT_PREFIX}"
|
217 |
+
|
218 |
+
docai_client = documentai.DocumentProcessorServiceClient()
|
219 |
+
|
220 |
+
processor_name = docai_client.processor_path(
|
221 |
+
project=GCP_PROJECT, location="us", processor=DOCUMENT_API_ID
|
222 |
+
)
|
223 |
+
|
224 |
+
gcs_document = documentai.GcsDocument(
|
225 |
+
gcs_uri=GCS_INPUT_URI,
|
226 |
+
mime_type="application/pdf", # Mime type is specified here for GcsDocument
|
227 |
+
)
|
228 |
+
|
229 |
+
gcs_documents = documentai.GcsDocuments(documents=[gcs_document])
|
230 |
+
|
231 |
+
# 3. Create the BatchDocumentsInputConfig
|
232 |
+
input_config = documentai.BatchDocumentsInputConfig(gcs_documents=gcs_documents)
|
233 |
+
# Note: If GCS_INPUT_URI was a prefix for multiple files, you'd use GcsPrefix:
|
234 |
+
# gcs_prefix = documentai.GcsPrefix(gcs_uri_prefix=GCS_INPUT_URI_PREFIX)
|
235 |
+
# input_config = documentai.BatchDocumentsInputConfig(gcs_prefix=gcs_prefix, mime_type="application/pdf")
|
236 |
+
|
237 |
+
# 4. Create the DocumentOutputConfig
|
238 |
+
# GCS_OUTPUT_URI should be a gs:// URI prefix where the output JSONs will be stored
|
239 |
+
output_config = documentai.DocumentOutputConfig(
|
240 |
+
gcs_output_config=documentai.DocumentOutputConfig.GcsOutputConfig(
|
241 |
+
gcs_uri=GCS_OUTPUT_URI
|
242 |
+
)
|
243 |
+
)
|
244 |
+
|
245 |
+
# 5. Construct the BatchProcessRequest
|
246 |
+
request = documentai.BatchProcessRequest(
|
247 |
+
name=processor_name,
|
248 |
+
input_documents=input_config, # Use 'input_documents'
|
249 |
+
document_output_config=output_config, # Use 'document_output_config'
|
250 |
+
)
|
251 |
+
|
252 |
+
# Submit the batch process request (this is a long-running operation)
|
253 |
+
operation = docai_client.batch_process_documents(request)
|
254 |
+
|
255 |
+
print("Batch processing operation started. Waiting for completion...")
|
256 |
+
while not operation.done():
|
257 |
+
time.sleep(15) # Wait for 30 seconds before checking again
|
258 |
+
print("Waiting...")
|
259 |
+
|
260 |
+
print("Batch processing operation finished.")
|
261 |
+
|
262 |
+
# --- Download the results from GCS ---
|
263 |
+
storage_client = storage.Client(
|
264 |
+
project=GCP_PROJECT
|
265 |
+
) # Uses GOOGLE_APPLICATION_CREDENTIALS/ADC
|
266 |
+
bucket = storage_client.bucket(GCS_BUCKET_NAME)
|
267 |
+
|
268 |
+
output_blobs = storage_client.list_blobs(
|
269 |
+
GCS_BUCKET_NAME, prefix=GCS_OUTPUT_PREFIX
|
270 |
+
)
|
271 |
+
|
272 |
+
downloaded_files_texts = []
|
273 |
+
try:
|
274 |
+
for blob in output_blobs:
|
275 |
+
# Document AI adds suffixes and subdirectories. Look for the actual JSON output files.
|
276 |
+
# The exact naming depends on the processor and options. Common pattern is ending with .json
|
277 |
+
if blob.name.endswith(".json"):
|
278 |
+
local_download_path = os.path.basename(
|
279 |
+
blob.name
|
280 |
+
) # Download to current directory with blob name
|
281 |
+
print(f"Downloading {blob.name} to {local_download_path}...")
|
282 |
+
blob.download_to_filename(local_download_path)
|
283 |
+
|
284 |
+
with open(local_download_path, "r", encoding="utf-8") as f:
|
285 |
+
document_data = json.load(f)
|
286 |
+
|
287 |
+
# The top-level 'text' field contains the concatenated plain text.
|
288 |
+
if "text" in document_data and document_data["text"] is not None:
|
289 |
+
raw_text = document_data["text"]
|
290 |
+
print(f"\n--- Raw Text Extracted from {blob.name} ---")
|
291 |
+
# Print only a snippet or process as needed
|
292 |
+
print(
|
293 |
+
raw_text[:1000] + "..."
|
294 |
+
if len(raw_text) > 1000
|
295 |
+
else raw_text
|
296 |
+
)
|
297 |
+
print("--------------------------------------------")
|
298 |
+
|
299 |
+
return raw_text
|
300 |
+
|
301 |
+
# Optional: Store the text. If you processed a batch of files,
|
302 |
+
# you might want to associate the text with the original file name.
|
303 |
+
# Document AI metadata might link output JSONs back to input files.
|
304 |
+
# For simplicity here, let's just show the extraction.
|
305 |
+
# If you know it was a single input PDF, this is all the text.
|
306 |
+
# If it was multiple, you'd need a mapping or process each JSON.
|
307 |
+
|
308 |
+
else:
|
309 |
+
print(
|
310 |
+
f"Warning: 'text' field not found in {blob.name} or is empty."
|
311 |
+
)
|
312 |
+
|
313 |
+
# Optional: Read and print a snippet of the JSON content
|
314 |
+
# with open(local_download_path, 'r', encoding='utf-8') as f:
|
315 |
+
# data = json.load(f)
|
316 |
+
# # Print some extracted text, for example (structure varies by processor)
|
317 |
+
# if 'text' in data:
|
318 |
+
# print(f"Extracted text snippet: {data['text'][:500]}...") # Print first 500 chars
|
319 |
+
# elif 'entities' in data:
|
320 |
+
# print(f"Number of entities found: {len(data['entities'])}")
|
321 |
+
# else:
|
322 |
+
# print("Output JSON structure not immediately recognizable.")
|
323 |
+
# break # Uncomment if you only expect/need to process the first output file
|
324 |
+
|
325 |
+
if len(downloaded_files_texts) == 0 or not downloaded_files_texts:
|
326 |
+
print("No JSON output files found in the specified output location.")
|
327 |
+
|
328 |
+
except Exception as e:
|
329 |
+
print(f"Error listing or downloading output files: {e}")
|
330 |
+
|
331 |
+
print("\nProcess complete.")
|
332 |
+
if downloaded_files_texts:
|
333 |
+
print(f"Downloaded output file(s): {', '.join(downloaded_files_texts)}")
|
334 |
+
print("These files contain the OCR results in JSON format.")
|
335 |
+
else:
|
336 |
+
print("No output files were successfully downloaded.")
|
_utils/langchain_utils/Vector_store_class.py
CHANGED
@@ -22,6 +22,8 @@ class VectorStore:
|
|
22 |
axiom_instance: Axiom,
|
23 |
) -> Tuple[Chroma, BM25Okapi, List[str]]:
|
24 |
"""Create vector store and BM25 index with contextualized chunks"""
|
|
|
|
|
25 |
try:
|
26 |
# Prepare texts with context
|
27 |
if is_contextualized_chunk:
|
@@ -69,5 +71,9 @@ class VectorStore:
|
|
69 |
return vector_store, bm25, chunk_ids
|
70 |
|
71 |
except Exception as e:
|
|
|
|
|
|
|
|
|
72 |
self.logger.error(f"Error creating enhanced vector store: {str(e)}")
|
73 |
-
|
|
|
22 |
axiom_instance: Axiom,
|
23 |
) -> Tuple[Chroma, BM25Okapi, List[str]]:
|
24 |
"""Create vector store and BM25 index with contextualized chunks"""
|
25 |
+
contador_erro = 0
|
26 |
+
|
27 |
try:
|
28 |
# Prepare texts with context
|
29 |
if is_contextualized_chunk:
|
|
|
71 |
return vector_store, bm25, chunk_ids
|
72 |
|
73 |
except Exception as e:
|
74 |
+
contador_erro += 1
|
75 |
+
if contador_erro >= 2:
|
76 |
+
raise Exception(f"Error creating enhanced vector store: {str(e)}")
|
77 |
+
|
78 |
self.logger.error(f"Error creating enhanced vector store: {str(e)}")
|
79 |
+
return self.create_enhanced_vector_store(chunks, False, axiom_instance)
|
entrypoint.sh
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
set -e # Exit immediately if a command exits with a non-zero status.
|
3 |
+
|
4 |
+
CREDENTIALS_FILE_PATH="/app/vella_gcp_luan_credentials.json"
|
5 |
+
|
6 |
+
# Check if the GCP_CREDENTIALS_JSON_CONTENT secret is provided
|
7 |
+
if [ -n "$GCP_CREDENTIALS_JSON_CONTENT" ]; then
|
8 |
+
echo "GCP_CREDENTIALS_JSON_CONTENT secret found. Writing to $CREDENTIALS_FILE_PATH"
|
9 |
+
# Use printf to preserve newlines and special characters correctly
|
10 |
+
printf "%s" "$GCP_CREDENTIALS_JSON_CONTENT" > "$CREDENTIALS_FILE_PATH"
|
11 |
+
export GOOGLE_APPLICATION_CREDENTIALS="$CREDENTIALS_FILE_PATH"
|
12 |
+
echo "GOOGLE_APPLICATION_CREDENTIALS set to $CREDENTIALS_FILE_PATH"
|
13 |
+
|
14 |
+
# Optional: Add a check to see if the file looks like JSON (basic check)
|
15 |
+
if command -v jq >/dev/null && jq -e . "$CREDENTIALS_FILE_PATH" >/dev/null 2>&1; then
|
16 |
+
echo "Credentials file appears to be valid JSON."
|
17 |
+
else
|
18 |
+
echo "Warning: Credentials file may not be valid JSON. Content:"
|
19 |
+
# cat "$CREDENTIALS_FILE_PATH" # Print the content for debugging
|
20 |
+
fi
|
21 |
+
|
22 |
+
else
|
23 |
+
echo "Warning: GCP_CREDENTIALS_JSON_CONTENT secret not found. GCP services might not authenticate."
|
24 |
+
fi
|
25 |
+
|
26 |
+
exec "$@"
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|