Spaces:
Running
Running
luanpoppe
commited on
Commit
·
449ce0a
1
Parent(s):
99fb68e
feat: adicionando primeiro rascunho
Browse files- .env.example +2 -1
- .gitignore +2 -1
- _utils/gerar_documento.py +75 -63
- _utils/gerar_documento_utils/prompts.py +12 -5
- _utils/gerar_documento_utils/utils.py +11 -2
- _utils/google_integration/google_cloud.py +26 -0
- _utils/langchain_utils/LLM_class.py +44 -2
- requirements.txt +0 -0
.env.example
CHANGED
@@ -11,4 +11,5 @@ LLAMA_CLOUD_API_KEY_PEIXE=""
|
|
11 |
DEEPSEEKK_API_KEY=""
|
12 |
GOOGLE_API_KEY_PEIXE=""
|
13 |
SENTRY_DSN=""
|
14 |
-
AMBIENTE="testes"
|
|
|
|
11 |
DEEPSEEKK_API_KEY=""
|
12 |
GOOGLE_API_KEY_PEIXE=""
|
13 |
SENTRY_DSN=""
|
14 |
+
AMBIENTE="testes"
|
15 |
+
GOOGLE_APPLICATION_CREDENTIALS=""
|
.gitignore
CHANGED
@@ -172,4 +172,5 @@ cython_debug/
|
|
172 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
173 |
#.idea/
|
174 |
|
175 |
-
# End of https://www.toptal.com/developers/gitignore/api/django
|
|
|
|
172 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
173 |
#.idea/
|
174 |
|
175 |
+
# End of https://www.toptal.com/developers/gitignore/api/django
|
176 |
+
vella_gcp_luan_credentials.json
|
_utils/gerar_documento.py
CHANGED
@@ -54,89 +54,101 @@ async def gerar_documento(
|
|
54 |
# Initialize enhanced summarizer
|
55 |
summarizer = GerarDocumento(serializer, axiom_instance)
|
56 |
|
57 |
-
all_PDFs_chunks, full_text_as_array =
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
)
|
63 |
axiom_instance.send_axiom(
|
64 |
f"INÍCIO DO TEXTO COMPLETO DOS PDFS: {full_text_as_array[0:5]}"
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
|
77 |
-
axiom_instance.send_axiom("COMEÇANDO A FAZER AS REQUISIÇÕES DO CONTEXTUAL")
|
78 |
-
contextualized_chunks = await contextual_retriever.contextualize_all_chunks(
|
79 |
-
all_PDFs_chunks, response_auxiliar_summary, axiom_instance
|
80 |
-
)
|
81 |
axiom_instance.send_axiom(
|
82 |
-
"
|
83 |
)
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
87 |
)
|
88 |
-
else:
|
89 |
-
chunks_processados = all_PDFs_chunks
|
90 |
-
|
91 |
-
llm = LLM()
|
92 |
-
prompt_para_gerar_query_dinamico = prompt_gerar_query_dinamicamente(
|
93 |
-
cast(str, response_auxiliar_summary)
|
94 |
-
)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
query_gerado_dinamicamente_para_o_vector_store = (
|
100 |
-
await llm.google_gemini_ainvoke(
|
101 |
-
prompt_para_gerar_query_dinamico, "gemini-2.0-flash"
|
102 |
)
|
103 |
-
)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
summarizer.
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
structured_summaries = await summarizer.gerar_documento_final(
|
119 |
-
vector_store,
|
120 |
-
bm25,
|
121 |
-
chunk_ids,
|
122 |
-
llm_ultimas_requests,
|
123 |
-
cast(
|
124 |
-
str, query_gerado_dinamicamente_para_o_vector_store.content
|
125 |
-
), # prompt_auxiliar_SEM_CONTEXT,
|
126 |
-
)
|
127 |
-
axiom_instance.send_axiom("TERMINOU DE FAZER A ÚLTIMA REQUISIÇÃO")
|
128 |
|
129 |
-
|
130 |
-
from rest_framework.response import Response
|
131 |
|
132 |
-
|
133 |
|
134 |
-
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
x["source"]["text"] = x["source"]["text"][0:200]
|
139 |
-
x["source"]["context"] = x["source"]["context"][0:200]
|
140 |
|
141 |
texto_completo_como_html = convert_markdown_to_HTML(texto_completo).replace(
|
142 |
"resposta_segunda_etapa:", "<br><br>"
|
|
|
54 |
# Initialize enhanced summarizer
|
55 |
summarizer = GerarDocumento(serializer, axiom_instance)
|
56 |
|
57 |
+
all_PDFs_chunks, full_text_as_array, vertex_response = (
|
58 |
+
await get_full_text_and_all_PDFs_chunks(
|
59 |
+
listaPDFs,
|
60 |
+
summarizer.splitter,
|
61 |
+
serializer.should_use_llama_parse,
|
62 |
+
isBubble,
|
63 |
+
)
|
64 |
)
|
65 |
axiom_instance.send_axiom(
|
66 |
f"INÍCIO DO TEXTO COMPLETO DOS PDFS: {full_text_as_array[0:5]}"
|
67 |
)
|
68 |
|
69 |
+
if not vertex_response:
|
70 |
+
is_contextualized_chunk = serializer.should_have_contextual_chunks
|
71 |
+
|
72 |
+
if is_contextualized_chunk:
|
73 |
+
response_auxiliar_summary = (
|
74 |
+
await get_response_from_auxiliar_contextual_prompt(
|
75 |
+
full_text_as_array
|
76 |
+
)
|
77 |
+
)
|
78 |
+
axiom_instance.send_axiom(
|
79 |
+
f"RESUMO INICIAL DO PROCESSO: {response_auxiliar_summary}"
|
80 |
+
)
|
81 |
+
|
82 |
+
axiom_instance.send_axiom(
|
83 |
+
"COMEÇANDO A FAZER AS REQUISIÇÕES DO CONTEXTUAL"
|
84 |
+
)
|
85 |
+
contextualized_chunks = (
|
86 |
+
await contextual_retriever.contextualize_all_chunks(
|
87 |
+
all_PDFs_chunks, response_auxiliar_summary, axiom_instance
|
88 |
+
)
|
89 |
+
)
|
90 |
+
axiom_instance.send_axiom(
|
91 |
+
"TERMINOU DE FAZER TODAS AS REQUISIÇÕES DO CONTEXTUAL"
|
92 |
+
)
|
93 |
+
chunks_processados = contextualized_chunks
|
94 |
+
axiom_instance.send_axiom(
|
95 |
+
f"CHUNKS PROCESSADOS INICIALMENTE: {chunks_processados}"
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
chunks_processados = all_PDFs_chunks
|
99 |
+
|
100 |
+
llm = LLM()
|
101 |
+
prompt_para_gerar_query_dinamico = prompt_gerar_query_dinamicamente(
|
102 |
+
cast(str, response_auxiliar_summary)
|
103 |
)
|
104 |
|
|
|
|
|
|
|
|
|
105 |
axiom_instance.send_axiom(
|
106 |
+
"COMEÇANDO REQUISIÇÃO PARA GERAR O QUERY DINAMICAMENTE DO VECTOR STORE"
|
107 |
)
|
108 |
+
query_gerado_dinamicamente_para_o_vector_store = (
|
109 |
+
await llm.google_gemini_ainvoke(
|
110 |
+
prompt_para_gerar_query_dinamico, "gemini-2.0-flash"
|
111 |
+
)
|
112 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
axiom_instance.send_axiom(
|
115 |
+
f"query_gerado_dinamicamente_para_o_vector_store: {query_gerado_dinamicamente_para_o_vector_store.content}",
|
|
|
|
|
|
|
|
|
116 |
)
|
|
|
117 |
|
118 |
+
# Create enhanced vector store and BM25 index
|
119 |
+
vector_store, bm25, chunk_ids = (
|
120 |
+
summarizer.vector_store.create_enhanced_vector_store(
|
121 |
+
chunks_processados, is_contextualized_chunk, axiom_instance
|
122 |
+
)
|
123 |
+
)
|
124 |
|
125 |
+
llm_ultimas_requests = serializer.llm_ultimas_requests
|
126 |
+
axiom_instance.send_axiom("COMEÇANDO A FAZER ÚLTIMA REQUISIÇ��O")
|
127 |
+
structured_summaries = await summarizer.gerar_documento_final(
|
128 |
+
vector_store,
|
129 |
+
bm25,
|
130 |
+
chunk_ids,
|
131 |
+
llm_ultimas_requests,
|
132 |
+
cast(
|
133 |
+
str, query_gerado_dinamicamente_para_o_vector_store.content
|
134 |
+
), # prompt_auxiliar_SEM_CONTEXT,
|
135 |
)
|
136 |
+
axiom_instance.send_axiom("TERMINOU DE FAZER A ÚLTIMA REQUISIÇÃO")
|
137 |
|
138 |
+
if not isinstance(structured_summaries, list):
|
139 |
+
from rest_framework.response import Response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
return Response({"erro": structured_summaries})
|
|
|
142 |
|
143 |
+
texto_completo = summarizer.resumo_gerado + "\n\n"
|
144 |
|
145 |
+
for x in structured_summaries:
|
146 |
+
texto_completo = texto_completo + x["content"] + "\n"
|
147 |
+
x["source"]["text"] = x["source"]["text"][0:200]
|
148 |
+
x["source"]["context"] = x["source"]["context"][0:200]
|
149 |
|
150 |
+
else:
|
151 |
+
axiom_instance.send_axiom("FOI UTILIZADO O VERTEX AI DO GOOGLE")
|
|
|
|
|
152 |
|
153 |
texto_completo_como_html = convert_markdown_to_HTML(texto_completo).replace(
|
154 |
"resposta_segunda_etapa:", "<br><br>"
|
_utils/gerar_documento_utils/prompts.py
CHANGED
@@ -1,4 +1,14 @@
|
|
1 |
-
def create_prompt_auxiliar_do_contextual_prompt(PROCESSO_JURIDICO: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
return f"""
|
3 |
<prompt>
|
4 |
<persona>
|
@@ -46,10 +56,7 @@ Seu objetivo é analisar o processo jurídico fornecido e gerar um relatório co
|
|
46 |
<instrucoes>
|
47 |
Siga estritamente os passos abaixo:
|
48 |
|
49 |
-
|
50 |
-
<processo_juridico>
|
51 |
-
{PROCESSO_JURIDICO}
|
52 |
-
</processo_juridico>
|
53 |
|
54 |
2. **Identificação e Listagem de Peças:** Identifique quais das peças listadas na `<tarefa>` estão presentes no texto. Liste **apenas** as encontradas na tag `<pecas_identificadas>`.
|
55 |
|
|
|
1 |
+
def create_prompt_auxiliar_do_contextual_prompt(PROCESSO_JURIDICO: str | None = None):
|
2 |
+
if PROCESSO_JURIDICO:
|
3 |
+
adicionar_ao_prompt = f"""
|
4 |
+
1. **Análise Completa:** Leia e analise todo o conteúdo do processo fornecido.
|
5 |
+
<processo_juridico>
|
6 |
+
{PROCESSO_JURIDICO}
|
7 |
+
</processo_juridico>"""
|
8 |
+
else:
|
9 |
+
adicionar_ao_prompt = """
|
10 |
+
1. **Análise Completa:** Leia e analise todo o conteúdo do processo fornecido como PDF."""
|
11 |
+
|
12 |
return f"""
|
13 |
<prompt>
|
14 |
<persona>
|
|
|
56 |
<instrucoes>
|
57 |
Siga estritamente os passos abaixo:
|
58 |
|
59 |
+
{adicionar_ao_prompt}
|
|
|
|
|
|
|
60 |
|
61 |
2. **Identificação e Listagem de Peças:** Identifique quais das peças listadas na `<tarefa>` estão presentes no texto. Liste **apenas** as encontradas na tag `<pecas_identificadas>`.
|
62 |
|
_utils/gerar_documento_utils/utils.py
CHANGED
@@ -106,11 +106,13 @@ async def get_full_text_and_all_PDFs_chunks(
|
|
106 |
splitterObject: Splitter,
|
107 |
should_use_llama_parse: bool,
|
108 |
isBubble: bool,
|
109 |
-
) -> Tuple[List[DocumentChunk], List[str]]:
|
110 |
all_PDFs_chunks: List[DocumentChunk] = []
|
111 |
|
112 |
pages: List[str] = []
|
113 |
|
|
|
|
|
114 |
# Load and process document
|
115 |
for pdf_path in listaPDFs:
|
116 |
chunks, pages = await splitterObject.load_and_split_document(
|
@@ -118,7 +120,14 @@ async def get_full_text_and_all_PDFs_chunks(
|
|
118 |
)
|
119 |
all_PDFs_chunks = all_PDFs_chunks + chunks
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
async def generate_document_title(resumo_para_gerar_titulo: str):
|
|
|
106 |
splitterObject: Splitter,
|
107 |
should_use_llama_parse: bool,
|
108 |
isBubble: bool,
|
109 |
+
) -> Tuple[List[DocumentChunk], List[str], Union[None, str]]:
|
110 |
all_PDFs_chunks: List[DocumentChunk] = []
|
111 |
|
112 |
pages: List[str] = []
|
113 |
|
114 |
+
vertex_response = None # Só terá valor se for necessário usar Vertex da Google para enviar o pdf e gerar resposta
|
115 |
+
|
116 |
# Load and process document
|
117 |
for pdf_path in listaPDFs:
|
118 |
chunks, pages = await splitterObject.load_and_split_document(
|
|
|
120 |
)
|
121 |
all_PDFs_chunks = all_PDFs_chunks + chunks
|
122 |
|
123 |
+
if len(pages) == 0 or len(all_PDFs_chunks) == 0:
|
124 |
+
llm = LLM()
|
125 |
+
prompt = create_prompt_auxiliar_do_contextual_prompt(None)
|
126 |
+
vertex_response = await llm.google_gemini_vertex_ainvoke(
|
127 |
+
prompt, listaPDFs, "gemini-2.0-flash"
|
128 |
+
)
|
129 |
+
|
130 |
+
return all_PDFs_chunks, pages, vertex_response
|
131 |
|
132 |
|
133 |
async def generate_document_title(resumo_para_gerar_titulo: str):
|
_utils/google_integration/google_cloud.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from google.cloud import storage
|
3 |
+
|
4 |
+
GCP_PROJECT = "gen-lang-client-0350149082"
|
5 |
+
|
6 |
+
|
7 |
+
def upload_to_gcs(LOCAL_PDF_PATH: str) -> str:
|
8 |
+
GCS_BUCKET_NAME = "vella-pdfs"
|
9 |
+
|
10 |
+
# Path in GCS
|
11 |
+
GCS_DESTINATION_BLOB_NAME = "gemini_uploads/" + os.path.basename(LOCAL_PDF_PATH)
|
12 |
+
|
13 |
+
"""Uploads a file to a GCS bucket and returns its URI."""
|
14 |
+
storage_client = storage.Client(
|
15 |
+
project=GCP_PROJECT,
|
16 |
+
)
|
17 |
+
bucket = storage_client.bucket(GCS_BUCKET_NAME)
|
18 |
+
blob = bucket.blob(GCS_DESTINATION_BLOB_NAME)
|
19 |
+
|
20 |
+
print(
|
21 |
+
f"Uploading {LOCAL_PDF_PATH} to gs://{GCS_BUCKET_NAME}/{GCS_DESTINATION_BLOB_NAME}..."
|
22 |
+
)
|
23 |
+
blob.upload_from_filename(LOCAL_PDF_PATH)
|
24 |
+
gcs_uri = f"gs://{GCS_BUCKET_NAME}/{GCS_DESTINATION_BLOB_NAME}"
|
25 |
+
print(f"File uploaded to {gcs_uri}")
|
26 |
+
return gcs_uri
|
_utils/langchain_utils/LLM_class.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
from typing import Literal, cast
|
2 |
from pydantic import SecretStr
|
3 |
-
from
|
4 |
from setup.easy_imports import ChatOpenAI, ChatGoogleGenerativeAI
|
5 |
import os
|
6 |
from langchain_core.messages import HumanMessage
|
|
|
7 |
|
8 |
deepseek_api_key = cast(str, os.environ.get("DEEPSEEKK_API_KEY"))
|
9 |
google_api_key = cast(str, os.environ.get("GOOGLE_API_KEY_PEIXE"))
|
@@ -75,3 +76,44 @@ class LLM:
|
|
75 |
raise Exception(
|
76 |
"Failed to generate the final document after 5 retries and the fallback attempt with chat-gpt-4o-mini."
|
77 |
) from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, cast
|
2 |
from pydantic import SecretStr
|
3 |
+
from _utils.google_integration.google_cloud import GCP_PROJECT, upload_to_gcs
|
4 |
from setup.easy_imports import ChatOpenAI, ChatGoogleGenerativeAI
|
5 |
import os
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
+
from langchain_google_vertexai import ChatVertexAI
|
8 |
|
9 |
deepseek_api_key = cast(str, os.environ.get("DEEPSEEKK_API_KEY"))
|
10 |
google_api_key = cast(str, os.environ.get("GOOGLE_API_KEY_PEIXE"))
|
|
|
76 |
raise Exception(
|
77 |
"Failed to generate the final document after 5 retries and the fallback attempt with chat-gpt-4o-mini."
|
78 |
) from e
|
79 |
+
|
80 |
+
async def google_gemini_vertex_ainvoke(
|
81 |
+
self,
|
82 |
+
prompt: str,
|
83 |
+
list_of_pdfs: List[str],
|
84 |
+
model: Google_llms = "gemini-2.5-flash-preview-04-17",
|
85 |
+
max_retries: int = 3,
|
86 |
+
) -> str | None:
|
87 |
+
message_parts = [
|
88 |
+
{"type": "text", "text": prompt},
|
89 |
+
]
|
90 |
+
for pdf in list_of_pdfs:
|
91 |
+
pdf_gcs_uri = upload_to_gcs(pdf)
|
92 |
+
message_parts.append(
|
93 |
+
{
|
94 |
+
# This structure is used for file references via URI
|
95 |
+
"type": "media",
|
96 |
+
"mime_type": "application/pdf", # <-- mime_type moved up
|
97 |
+
"file_uri": pdf_gcs_uri, # <-- file_uri moved up
|
98 |
+
}
|
99 |
+
)
|
100 |
+
|
101 |
+
for attempt in range(max_retries):
|
102 |
+
try:
|
103 |
+
llm = ChatVertexAI(
|
104 |
+
model_name=model,
|
105 |
+
project=GCP_PROJECT,
|
106 |
+
location="us-central1",
|
107 |
+
temperature=0,
|
108 |
+
)
|
109 |
+
response = await llm.ainvoke(
|
110 |
+
[HumanMessage(content=message_parts)] # type: ignore
|
111 |
+
)
|
112 |
+
|
113 |
+
if isinstance(response.content, list):
|
114 |
+
response.content = "\n".join(response.content) # type: ignore
|
115 |
+
|
116 |
+
return response.content # type: ignore
|
117 |
+
except Exception as e:
|
118 |
+
model = "gemini-2.0-flash"
|
119 |
+
print(f"Attempt {attempt + 1} failed with error: {e}")
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|