File size: 8,181 Bytes
cb23311
78209bc
eebeb78
6e09bf4
 
 
 
 
 
 
 
 
78209bc
12d3e1a
 
 
 
 
6e09bf4
 
12d3e1a
 
 
 
 
 
 
ab34606
12d3e1a
 
 
 
 
78209bc
 
 
12d3e1a
cb23311
78209bc
 
 
 
32df555
12d3e1a
ab34606
78209bc
 
0f952b3
6e09bf4
78209bc
 
 
ab34606
 
 
 
 
78209bc
ab34606
 
 
 
 
78209bc
 
0f952b3
78209bc
 
 
 
ab34606
 
12d3e1a
78209bc
0f952b3
6e09bf4
 
 
 
 
 
f490f11
6e09bf4
78209bc
 
 
 
ab34606
 
78209bc
 
 
 
 
 
 
 
 
 
 
f490f11
ab34606
78209bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d3e1a
78209bc
 
 
 
 
 
12d3e1a
78209bc
f490f11
12d3e1a
ab34606
12d3e1a
 
 
 
 
 
 
 
 
 
 
b374298
12d3e1a
 
 
 
 
 
 
 
 
 
b374298
 
12d3e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32424b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab34606
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from _utils.bubble_integrations.obter_arquivo import get_pdf_from_bubble
from _utils.handle_files import return_document_list_with_llama_parser
from _utils.langchain_utils.splitter_util import (
    SplitterUtils,
    combine_documents_without_losing_pagination,
)
from setup.easy_imports import (
    PyPDFLoader,
    RecursiveCharacterTextSplitter,
    Document,
    Docx2txtLoader,
)
from typing import Any, List, Dict, Tuple, Optional, cast
from _utils.models.gerar_relatorio import (
    DocumentChunk,
)
import uuid

splitter_utils = SplitterUtils()


class Splitter:
    def __init__(
        self,
        chunk_size,
        chunk_overlap,
    ):
        self.splitter_simple = Splitter_Simple(chunk_size, chunk_overlap)
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=chunk_size, chunk_overlap=chunk_overlap
        )
        self.chunk_metadata = {}  # Store chunk metadata for tracing

    async def load_and_split_document(
        self, pdf_path: str, should_use_llama_parse: bool, isBubble: bool
    ):
        """Load PDF and split into chunks with metadata"""
        # loader = PyPDFLoader(pdf_path)
        # if not pages:
        #     pages = get_pdf_from_bubble(
        #         pdf_path
        #     )  # Gera uma lista de objetos Document, sendo cada item da lista referente a UMA PÁGINA inteira do PDF.
        full_text_as_string = ""

        chunks_of_string_only: List[str] = []

        if isBubble:
            print("\nPEGANDO PDF DO BUBBLE")
            pages = await get_pdf_from_bubble(pdf_path, should_use_llama_parse)  # type: ignore
            page_boundaries, combined_text = (
                combine_documents_without_losing_pagination(pages)
            )
            chunks_of_string_only = (
                chunks_of_string_only
                + self.splitter_simple.get_chunks_of_string_only_from_list_of_documents(
                    pages
                )
            )
            # for page in pages:
            #     full_text_as_string = full_text_as_string + page.page_content
            # chunks_of_string_only = chunks_of_string_only + self.text_splitter.split_text(
            #     combined_text
            # )
        else:
            if should_use_llama_parse:
                print("\nENVIANDO PDFS PARA LLAMA PARSE")
                pages = await return_document_list_with_llama_parser(pdf_path)
                page_boundaries, combined_text = (
                    combine_documents_without_losing_pagination(pages)
                )
                chunks_of_string_only = (
                    chunks_of_string_only + self.text_splitter.split_text(combined_text)
                )
            else:
                print("\nCOMEÇANDO LEITURA DO PDF")
                file_extension = splitter_utils.get_file_type(pdf_path)
                print("file_extension: ", file_extension)
                if file_extension == "pdf":
                    pages = PyPDFLoader(pdf_path).load()
                else:
                    pages = Docx2txtLoader(pdf_path).load()
                print("TERMINOU LEITURA DO PDF")
                print("pages: ", pages)
                page_boundaries, combined_text = (
                    combine_documents_without_losing_pagination(pages)
                )

                chunks_of_string_only = (
                    chunks_of_string_only + self.text_splitter.split_text(combined_text)
                )

        chunks: List[DocumentChunk] = []
        char_count = 0

        # for page in pages:
        #     text = page.page_content
        #     page_chunks = self.text_splitter.split_text(
        #         text
        #     )  # Quebra o item que é um Document de UMA PÁGINA inteira em um lista onde cada item é referente a um chunk, que são pedaços menores do que uma página.
        text_char = 0
        print("\nQUEBRANDO PDF EM CHUNKS ORGANIZADOS")
        for chunk in chunks_of_string_only:
            chunk_id = str(uuid.uuid4())
            start_char = text_char + 1
            end_char = start_char + len(chunk)
            text_char = end_char

            if should_use_llama_parse:
                somar_pages = 0
            else:
                somar_pages = 1

            page_number = 0
            for start, end, page_number in page_boundaries:
                if start <= start_char < end:
                    page_number = page_number
                    break

            doc_chunk = DocumentChunk(  # Gera o objeto do chunk com informações adicionais, como a posição e id do chunk
                content=chunk,
                contextual_summary="",
                page_number=page_number + somar_pages,  # 1-based page numbering
                chunk_id=chunk_id,
                start_char=char_count + start_char,
                end_char=char_count + end_char,
            )
            chunks.append(doc_chunk)

            # Store metadata for later retrieval
            self.chunk_metadata[chunk_id] = {
                "page": doc_chunk.page_number,
                "start_char": doc_chunk.start_char,
                "end_char": doc_chunk.end_char,
            }

            # char_count += len(text)
        print("TERMINOU DE ORGANIZAR PDFS EM CHUNKS")

        return chunks, chunks_of_string_only, full_text_as_string

    def load_and_split_text(self, text: str) -> List[DocumentChunk]:
        """Load Text and split into chunks with metadata - Criei essa função apenas para o ragas"""
        page = Document(page_content=text, metadata={"page": 1})
        chunks = []
        char_count = 0

        text = page.page_content
        page_chunks = self.text_splitter.split_text(
            text
        )  # Quebra o item que é um Document de UMA PÁGINA inteira em um lista onde cada item é referente a um chunk, que são pedaços menores do que uma página.
        print("\n\n\npage_chunks: ", page_chunks)

        for chunk in page_chunks:
            chunk_id = str(uuid.uuid4())
            start_char = text.find(
                chunk
            )  # Retorna a posição onde se encontra o chunk dentro da página inteira
            end_char = start_char + len(chunk)

            doc_chunk = DocumentChunk(  # Gera o objeto do chunk com informações adicionais, como a posição e id do chunk
                content=chunk,
                page_number=cast(int, page.metadata.get("page"))
                + 1,  # 1-based page numbering
                chunk_id=chunk_id,
                start_char=char_count + start_char,
                end_char=char_count + end_char,
            )
            chunks.append(doc_chunk)

            # Store metadata for later retrieval
            self.chunk_metadata[chunk_id] = {
                "page": doc_chunk.page_number,
                "start_char": doc_chunk.start_char,
                "end_char": doc_chunk.end_char,
            }

        char_count += len(text)

        return chunks


class Splitter_Simple:
    def __init__(
        self,
        chunk_size=1000,
        chunk_overlap=400,
    ):
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=chunk_size, chunk_overlap=chunk_overlap
        )

    async def load_and_split_document(self, pdf_path: str):
        """Load PDF and split into chunks with metadata"""
        print("\nCOMEÇANDO LEITURA DO PDF")
        pages = PyPDFLoader(pdf_path).load_and_split(self.text_splitter)
        print("\nTERMINADO LEITURA DO PDF")

        return pages

    def load_and_split_text(self, text: str) -> List[Document]:
        documents: List[Document] = []
        chunks = self.text_splitter.split_text(text)

        for chunk in chunks:
            documents.append(Document(page_content=chunk))

        return documents

    def get_chunks_of_string_only_from_list_of_documents(
        self, lista_de_documentos: List[Document]
    ):
        full_text_as_string = ""
        for page in lista_de_documentos:
            full_text_as_string = full_text_as_string + page.page_content
        full_text_as_array = self.text_splitter.split_text(full_text_as_string)
        return full_text_as_array