luanpoppe
feat: adicionando opção de fazer requisições para o gemini 2.5 pro
64ed488
raw
history blame
12.9 kB
from dataclasses import dataclass
import os
from typing import Any, List, Dict, Literal, Tuple, Optional, Union, cast
from pydantic import SecretStr
from _utils.langchain_utils.Chain_class import Chain
from _utils.langchain_utils.LLM_class import LLM
from _utils.langchain_utils.Prompt_class import Prompt
from _utils.langchain_utils.Vector_store_class import VectorStore
from gerar_documento.serializer import (
GerarDocumentoComPDFProprioSerializerData,
GerarDocumentoSerializerData,
)
from setup.easy_imports import (
Chroma,
ChatOpenAI,
PromptTemplate,
BM25Okapi,
Response,
HuggingFaceEmbeddings,
)
import logging
from _utils.models.gerar_documento import (
RetrievalConfig,
)
from cohere import Client
from _utils.langchain_utils.Splitter_class import Splitter
import time
from setup.logging import Axiom
def reciprocal_rank_fusion(result_lists, weights=None):
"""Combine multiple ranked lists using reciprocal rank fusion"""
fused_scores = {}
num_lists = len(result_lists)
if weights is None:
weights = [1.0] * num_lists
for i in range(num_lists):
for doc_id, score in result_lists[i]:
if doc_id not in fused_scores:
fused_scores[doc_id] = 0
fused_scores[doc_id] += weights[i] * score
# Sort by score in descending order
sorted_results = sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
return sorted_results
@dataclass
class GerarDocumentoUtils:
def criar_output_estruturado(self, summaries: List[str | Any], sources: Any):
structured_output = []
for idx, summary in enumerate(summaries):
source_idx = min(idx, len(sources) - 1)
structured_output.append(
{
"content": summary,
"source": {
"page": sources[source_idx]["page"],
"text": sources[source_idx]["content"][:200] + "...",
"context": sources[source_idx]["context"],
"relevance_score": sources[source_idx]["relevance_score"],
"chunk_id": sources[source_idx]["chunk_id"],
},
}
)
return structured_output
def ultima_tentativa_requisicao(self, prompt_gerar_documento_formatado):
llm = LLM()
resposta = llm.open_ai().invoke(prompt_gerar_documento_formatado)
documento_gerado = resposta.content.strip() # type: ignore
if not documento_gerado:
raise Exception(
"Falha ao tentar gerar o documento final por 5 tentativas e também ao tentar na última tentativa com o chat-gpt 4o mini."
)
else:
return documento_gerado
class GerarDocumento:
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
cohere_api_key = os.environ.get("COHERE_API_KEY", "")
resumo_gerado = ""
gerar_documento_utils = GerarDocumentoUtils()
def __init__(
self,
serializer: Union[
GerarDocumentoSerializerData, GerarDocumentoComPDFProprioSerializerData, Any
],
axiom_instance: Axiom,
):
self.config = RetrievalConfig(
num_chunks=serializer.num_chunks_retrieval,
embedding_weight=serializer.embedding_weight,
bm25_weight=serializer.bm25_weight,
context_window=serializer.context_window,
chunk_overlap=serializer.chunk_overlap,
)
self.logger = logging.getLogger(__name__)
# self.prompt_auxiliar = prompt_auxiliar
self.gpt_model = serializer.model
self.gpt_temperature = serializer.gpt_temperature
self.prompt_gerar_documento = serializer.prompt_gerar_documento
self.openai_api_key = self.openai_api_key
self.cohere_client = Client(self.cohere_api_key)
self.embeddings = HuggingFaceEmbeddings(model_name=serializer.hf_embedding)
self.num_k_rerank = serializer.num_k_rerank
self.model_cohere_rerank = serializer.model_cohere_rerank
self.splitter = Splitter(serializer.chunk_size, serializer.chunk_overlap)
self.prompt_gerar_documento_etapa_2 = serializer.prompt_gerar_documento_etapa_2
self.prompt_gerar_documento_etapa_3 = serializer.prompt_gerar_documento_etapa_3
self.vector_store = VectorStore(serializer.hf_embedding)
self.axiom_instance: Axiom = axiom_instance
def retrieve_with_rank_fusion(
self, vector_store: Chroma, bm25: BM25Okapi, chunk_ids: List[str], query: str
) -> List[Dict]:
"""Combine embedding and BM25 retrieval results"""
try:
# Get embedding results
embedding_results = vector_store.similarity_search_with_score(
query, k=self.config.num_chunks
)
# Convert embedding results to list of (chunk_id, score)
embedding_list = [
(doc.metadata["chunk_id"], 1 / (1 + score))
for doc, score in embedding_results
]
# Get BM25 results
tokenized_query = query.split()
bm25_scores = bm25.get_scores(tokenized_query)
# Convert BM25 scores to list of (chunk_id, score)
bm25_list = [
(chunk_ids[i], float(score)) for i, score in enumerate(bm25_scores)
]
# Sort bm25_list by score in descending order and limit to top N results
bm25_list = sorted(bm25_list, key=lambda x: x[1], reverse=True)[
: self.config.num_chunks
]
# Normalize BM25 scores
calculo_max = max(
[score for _, score in bm25_list]
) # Criei este max() pois em alguns momentos estava vindo valores 0, e reclamava que não podia dividir por 0
max_bm25 = calculo_max if bm25_list and calculo_max else 1
bm25_list = [(doc_id, score / max_bm25) for doc_id, score in bm25_list]
# Pass the lists to rank fusion
result_lists = [embedding_list, bm25_list]
weights = [self.config.embedding_weight, self.config.bm25_weight]
combined_results = reciprocal_rank_fusion(result_lists, weights=weights)
return combined_results # type: ignore
except Exception as e:
self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
raise
def rank_fusion_get_top_results(
self,
vector_store: Chroma,
bm25: BM25Okapi,
chunk_ids: List[str],
query: str = "Summarize the main points of this document",
):
# Get combined results using rank fusion
ranked_results = self.retrieve_with_rank_fusion(
vector_store, bm25, chunk_ids, query
)
# Prepare context and track sources
contexts = []
sources = []
# Get full documents for top results
for chunk_id, score in ranked_results[: self.config.num_chunks]:
results = vector_store.get(
where={"chunk_id": chunk_id}, include=["documents", "metadatas"]
)
if results["documents"]:
context = results["documents"][0]
metadata = results["metadatas"][0]
contexts.append(context)
sources.append(
{
"content": context,
"page": metadata["page"],
"chunk_id": chunk_id,
"relevance_score": score,
"context": metadata.get("context", ""),
}
)
return sources, contexts
def select_model_for_last_requests(
self,
llm_ultimas_requests: Literal[
"gpt-4o-mini", "deepseek-chat", "gemini-2.0-flash", "gemini-2.5-pro"
],
):
llm_instance = LLM()
if llm_ultimas_requests == "gpt-4o-mini":
llm = ChatOpenAI(
temperature=self.gpt_temperature,
model=self.gpt_model,
api_key=SecretStr(self.openai_api_key),
)
elif llm_ultimas_requests == "deepseek-chat":
llm = llm_instance.deepseek()
elif llm_ultimas_requests == "gemini-2.0-flash":
llm = llm_instance.google_gemini("gemini-2.0-flash")
elif llm_ultimas_requests == "gemini-2.5-pro":
llm = llm_instance.google_gemini("gemini-2.5-pro-exp-03-25")
return llm
async def gerar_documento_final(
self,
vector_store: Chroma,
bm25: BM25Okapi,
chunk_ids: List[str],
llm_ultimas_requests: str,
query: str = "Summarize the main points of this document",
) -> List[Dict]:
try:
sources, contexts = self.rank_fusion_get_top_results(
vector_store, bm25, chunk_ids, query
)
prompt_gerar_documento = PromptTemplate(
template=cast(str, self.prompt_gerar_documento),
input_variables=["context"],
)
llm = self.select_model_for_last_requests(llm_ultimas_requests) # type: ignore
prompt_instance = Prompt()
context_do_prompt_primeira_etapa = "\n\n".join(contexts)
prompt_primeira_etapa = prompt_gerar_documento.format(
context=context_do_prompt_primeira_etapa,
)
documento_gerado = await self.checar_se_resposta_vazia_do_documento_final(
llm_ultimas_requests, prompt_primeira_etapa
)
texto_final_juntando_as_etapas = ""
resposta_primeira_etapa = documento_gerado
texto_final_juntando_as_etapas += resposta_primeira_etapa
self.axiom_instance.send_axiom(
f"RESULTADO ETAPA 1: {resposta_primeira_etapa}"
)
if self.prompt_gerar_documento_etapa_2:
self.axiom_instance.send_axiom("GERANDO DOCUMENTO - COMEÇANDO ETAPA 2")
prompt_etapa_2 = prompt_instance.create_and_invoke_prompt(
self.prompt_gerar_documento_etapa_2,
dynamic_dict={"context": context_do_prompt_primeira_etapa},
)
documento_gerado = llm.invoke(prompt_etapa_2).content
resposta_segunda_etapa = documento_gerado
texto_final_juntando_as_etapas += (
f"\n\nresposta_segunda_etapa:{resposta_segunda_etapa}"
)
self.axiom_instance.send_axiom(f"RESULTADO ETAPA 2: {documento_gerado}")
if self.prompt_gerar_documento_etapa_3:
self.axiom_instance.send_axiom("GERANDO DOCUMENTO - COMEÇANDO ETAPA 3")
prompt_etapa_3 = prompt_instance.create_and_invoke_prompt(
self.prompt_gerar_documento_etapa_3,
dynamic_dict={
"context": f"{resposta_primeira_etapa}\n\n{resposta_segunda_etapa}"
},
)
documento_gerado = llm.invoke(prompt_etapa_3).content
texto_final_juntando_as_etapas += f"\n\n{documento_gerado}"
self.axiom_instance.send_axiom(f"RESULTADO ETAPA 3: {documento_gerado}")
# Split the response into paragraphs
summaries = [
p.strip() for p in texto_final_juntando_as_etapas.split("\n\n") if p.strip() # type: ignore
]
structured_output = self.gerar_documento_utils.criar_output_estruturado(
summaries, sources
)
return structured_output
except Exception as e:
self.logger.error(f"Error generating enhanced summary: {str(e)}")
raise
async def checar_se_resposta_vazia_do_documento_final(
self, llm_ultimas_requests: str, prompt: str
):
llm = self.select_model_for_last_requests(llm_ultimas_requests) # type: ignore
documento_gerado = ""
tentativas = 0
while tentativas < 5 and not documento_gerado:
tentativas += 1
resposta = llm.invoke(prompt)
if hasattr(resposta, "content") and resposta.content.strip(): # type: ignore
documento_gerado = resposta.content.strip() # type: ignore
else:
print(f"Tentativa {tentativas}: resposta vazia ou inexistente.")
time.sleep(5)
if not documento_gerado:
self.axiom_instance.send_axiom(
"TENTANDO GERAR DOCUMENTO FINAL COM GPT 4o-mini COMO ÚLTIMA TENTATIVA"
)
documento_gerado = self.gerar_documento_utils.ultima_tentativa_requisicao(
prompt
)
return documento_gerado