import os os.system("pip install gradio transformers torch") from transformers import T5Tokenizer, T5ForConditionalGeneration import gradio as gr model = T5ForConditionalGeneration.from_pretrained("./Ruttoni_AI") tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") print("Model loaded!") # Generate a summary using the trained model def generate_summary(input_text): input_ids = tokenizer.encode(input_text, return_tensors='pt') outputs = model.generate(input_ids) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary ai = gr.Interface(fn=generate_summary, inputs="text", outputs="text") ai.launch() print("Interface Started!")