File size: 3,445 Bytes
ada9d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d44734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada9d7c
 
 
 
 
 
0d44734
ada9d7c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr


description = """
<div style="text-align: center;">
    <h1>Norsk UD (Bokmål og Nynorsk)</h1>
    <p align="center">
        <img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=6.75%>
    </p><p></p>
</div>
"""

text = """1	President	President	PROPN	NNP	Number=Sing	5	nsubj	5:nsubj	_
2	Bush	Bush	PROPN	NNP	Number=Sing	1	flat	1:flat	_
3	on	on	ADP	IN	_	4	case	4:case	_
4	Tuesday	Tuesday	PROPN	NNP	Number=Sing	5	obl	5:obl:on	_
5	nominated	nominate	VERB	VBD	Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin	0	root	0:root	_
6	two	two	NUM	CD	NumType=Card	7	nummod	7:nummod	_
7	individuals	individual	NOUN	NNS	Number=Plur	5	obj	5:obj	_
8	to	to	PART	TO	_	9	mark	9:mark	_
9	replace	replace	VERB	VB	VerbForm=Inf	5	advcl	5:advcl:to	_
10	retiring	retire	VERB	VBG	VerbForm=Ger	11	amod	11:amod	_
11	jurists	jurist	NOUN	NNS	Number=Plur	9	obj	9:obj	_
12	on	on	ADP	IN	_	14	case	14:case	_
13	federal	federal	ADJ	JJ	Degree=Pos	14	amod	14:amod	_
14	courts	court	NOUN	NNS	Number=Plur	11	nmod	11:nmod:on	_
15	in	in	ADP	IN	_	18	case	18:case	_
16	the	the	DET	DT	Definite=Def|PronType=Art	18	det	18:det	_
17	Washington	Washington	PROPN	NNP	Number=Sing	18	compound	18:compound	_
18	area	area	NOUN	NN	Number=Sing	14	nmod	14:nmod:in	SpaceAfter=No
19	.	.	PUNCT	.	_	5	punct	5:punct	_"""

forms = [
    line.split("\t")[1]
    for line in text.split("\n")
    if line and not line.startswith("#")
]

lemmas = [
    line.split("\t")[2]
    for line in text.split("\n")
    if line and not line.startswith("#")
]

upos = [
    line.split("\t")[3]
    for line in text.split("\n")
    if line and not line.startswith("#")
]

xpos = [
    line.split("\t")[4]
    for line in text.split("\n")
    if line and not line.startswith("#")
]

feats = [
    line.split("\t")[5]
    for line in text.split("\n")
    if line and not line.startswith("#")
]

metadata = [
    line.split("\t")[9]
    for line in text.split("\n")
    if line and not line.startswith("#")
]

edges = [
    int(line.split("\t")[6])
    for line in text.split("\n")
    if line and not line.startswith("#")
]

edge_labels = [
    line.split("\t")[7]
    for line in text.split("\n")
    if line and not line.startswith("#")
]



with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
    gr.HTML(description)

    gr.Dataframe([forms], interactive=False, type="array")

    with gr.Accordion("Lemmas", open=True):
        gr.Dataframe([lemmas], interactive=False, type="array")
    
    with gr.Accordion("UPOS", open=True):
        gr.Dataframe([upos], interactive=False, type="array")
    
    with gr.Accordion("XPOS", open=True):
        gr.Dataframe([xpos], interactive=False, type="array")

        gr.HTML("""<table>
  <thead>
    <tr>
      <th>City name</th>
      <th>Area</th>
      <th>Population</th>
      <th>Annual Rainfall</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Adelaide</td>
      <td>1295</td>
      <td>1158259</td>
      <td>600.5</td>
    </tr>
    <tr>
      <td>Brisbane</td>
      <td>5905</td>
      <td>1857594</td>
      <td>1146.4</td>
    </tr>
  </tbody>
</table>""")
    
    with gr.Accordion("UFeats", open=True):
        feats = [feat.split("|") for feat in feats]
        max_len = max([len(feat) for feat in feats])
        feats = [feat + [""] * (max_len - len(feat)) for feat in feats]
        feats = list(zip(*feats))
        gr.Dataframe(feats, interactive=False, type="array")

demo.launch()