File size: 3,445 Bytes
ada9d7c 0d44734 ada9d7c 0d44734 ada9d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
description = """
<div style="text-align: center;">
<h1>Norsk UD (Bokmål og Nynorsk)</h1>
<p align="center">
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=6.75%>
</p><p></p>
</div>
"""
text = """1 President President PROPN NNP Number=Sing 5 nsubj 5:nsubj _
2 Bush Bush PROPN NNP Number=Sing 1 flat 1:flat _
3 on on ADP IN _ 4 case 4:case _
4 Tuesday Tuesday PROPN NNP Number=Sing 5 obl 5:obl:on _
5 nominated nominate VERB VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 root 0:root _
6 two two NUM CD NumType=Card 7 nummod 7:nummod _
7 individuals individual NOUN NNS Number=Plur 5 obj 5:obj _
8 to to PART TO _ 9 mark 9:mark _
9 replace replace VERB VB VerbForm=Inf 5 advcl 5:advcl:to _
10 retiring retire VERB VBG VerbForm=Ger 11 amod 11:amod _
11 jurists jurist NOUN NNS Number=Plur 9 obj 9:obj _
12 on on ADP IN _ 14 case 14:case _
13 federal federal ADJ JJ Degree=Pos 14 amod 14:amod _
14 courts court NOUN NNS Number=Plur 11 nmod 11:nmod:on _
15 in in ADP IN _ 18 case 18:case _
16 the the DET DT Definite=Def|PronType=Art 18 det 18:det _
17 Washington Washington PROPN NNP Number=Sing 18 compound 18:compound _
18 area area NOUN NN Number=Sing 14 nmod 14:nmod:in SpaceAfter=No
19 . . PUNCT . _ 5 punct 5:punct _"""
forms = [
line.split("\t")[1]
for line in text.split("\n")
if line and not line.startswith("#")
]
lemmas = [
line.split("\t")[2]
for line in text.split("\n")
if line and not line.startswith("#")
]
upos = [
line.split("\t")[3]
for line in text.split("\n")
if line and not line.startswith("#")
]
xpos = [
line.split("\t")[4]
for line in text.split("\n")
if line and not line.startswith("#")
]
feats = [
line.split("\t")[5]
for line in text.split("\n")
if line and not line.startswith("#")
]
metadata = [
line.split("\t")[9]
for line in text.split("\n")
if line and not line.startswith("#")
]
edges = [
int(line.split("\t")[6])
for line in text.split("\n")
if line and not line.startswith("#")
]
edge_labels = [
line.split("\t")[7]
for line in text.split("\n")
if line and not line.startswith("#")
]
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
gr.HTML(description)
gr.Dataframe([forms], interactive=False, type="array")
with gr.Accordion("Lemmas", open=True):
gr.Dataframe([lemmas], interactive=False, type="array")
with gr.Accordion("UPOS", open=True):
gr.Dataframe([upos], interactive=False, type="array")
with gr.Accordion("XPOS", open=True):
gr.Dataframe([xpos], interactive=False, type="array")
gr.HTML("""<table>
<thead>
<tr>
<th>City name</th>
<th>Area</th>
<th>Population</th>
<th>Annual Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelaide</td>
<td>1295</td>
<td>1158259</td>
<td>600.5</td>
</tr>
<tr>
<td>Brisbane</td>
<td>5905</td>
<td>1857594</td>
<td>1146.4</td>
</tr>
</tbody>
</table>""")
with gr.Accordion("UFeats", open=True):
feats = [feat.split("|") for feat in feats]
max_len = max([len(feat) for feat in feats])
feats = [feat + [""] * (max_len - len(feat)) for feat in feats]
feats = list(zip(*feats))
gr.Dataframe(feats, interactive=False, type="array")
demo.launch()
|