Commit
·
1eb15c8
1
Parent(s):
51e64b6
feat: make df cols more readable
Browse files
app.py
CHANGED
@@ -49,6 +49,16 @@ def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
|
|
49 |
|
50 |
return df
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def _check_match_type(match_type: str) -> str:
|
54 |
allowed_match_types = {"tournament", "league"}
|
@@ -198,12 +208,12 @@ def usatt_rating_analyzer(file_obj):
|
|
198 |
matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
|
199 |
opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
|
200 |
competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
|
201 |
-
most_frequent_opponents = get_most_frequent_opponents(df)
|
202 |
-
best_wins = get_best_wins(df)
|
203 |
-
biggest_upsets = get_biggest_upsets(df)
|
204 |
-
highest_rated_opponent = get_highest_rated_opponent(df)
|
205 |
rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
|
206 |
-
match_with_longest_game = get_match_with_longest_game(df, is_tournament)
|
207 |
opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
|
208 |
opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)
|
209 |
|
@@ -227,12 +237,10 @@ with gr.Blocks() as demo:
|
|
227 |
analyze_btn_title = "Analyze"
|
228 |
gr.Markdown(f"""# USATT rating analyzer
|
229 |
Analyze [USA table tennis](https://www.teamusa.org/usa-table-tennis) tournament and league results.
|
230 |
-
|
231 |
## Downloading match results
|
232 |
1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth) to your USATT account.
|
233 |
2. Find the *active* player you wish to analyze (e.g., [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
|
234 |
3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
|
235 |
-
|
236 |
## Usage
|
237 |
1. Simply add your tournament/league match history CSV file and click the "{analyze_btn_title}" button.
|
238 |
""")
|
@@ -247,13 +255,13 @@ with gr.Blocks() as demo:
|
|
247 |
num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
|
248 |
with gr.Column():
|
249 |
num_matches_box = gr.Textbox(lines=1, label="Number of matches played")
|
250 |
-
|
251 |
with gr.Row():
|
252 |
with gr.Column():
|
253 |
rating_over_time_plot = gr.Plot(show_label=False)
|
254 |
with gr.Column():
|
255 |
matches_per_comp_plot = gr.Plot(show_label=False)
|
256 |
-
|
257 |
with gr.Row():
|
258 |
with gr.Column():
|
259 |
opponent_names_plot = gr.Plot(label="Opponent names")
|
@@ -263,7 +271,7 @@ with gr.Blocks() as demo:
|
|
263 |
with gr.Row():
|
264 |
with gr.Column():
|
265 |
most_frequent_opponents_gdf = gr.Dataframe(label="Most frequent opponents", max_rows=5)
|
266 |
-
best_wins_gdf = gr.Dataframe(label="Best wins (matches won sorted by opponent post-competition rating)",
|
267 |
max_rows=5)
|
268 |
biggest_upsets_gdf = gr.Dataframe(label="Biggest upsets (matches won sorted by rating - opponent post-competition rating)",
|
269 |
max_rows=5)
|
@@ -294,7 +302,6 @@ with gr.Blocks() as demo:
|
|
294 |
opponent_rating_dist_over_time_plot,
|
295 |
]
|
296 |
|
297 |
-
|
298 |
btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)
|
299 |
|
300 |
if __name__ == "__main__":
|
|
|
49 |
|
50 |
return df
|
51 |
|
52 |
+
def make_df_columns_readable(df: Optional[pd.DataFrame], is_tournament: bool) -> Optional[pd.DataFrame]:
|
53 |
+
"""Make a data frame's columns human-readable."""
|
54 |
+
if df is None:
|
55 |
+
return None
|
56 |
+
|
57 |
+
if not is_tournament:
|
58 |
+
df = df.rename(columns={"league_name": "league"})
|
59 |
+
|
60 |
+
df = df.rename(columns=lambda c: " ".join(c.capitalize().split("_")))
|
61 |
+
return df
|
62 |
|
63 |
def _check_match_type(match_type: str) -> str:
|
64 |
allowed_match_types = {"tournament", "league"}
|
|
|
208 |
matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
|
209 |
opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
|
210 |
competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
|
211 |
+
most_frequent_opponents = make_df_columns_readable(get_most_frequent_opponents(df), is_tournament)
|
212 |
+
best_wins = make_df_columns_readable(get_best_wins(df), is_tournament)
|
213 |
+
biggest_upsets = make_df_columns_readable(get_biggest_upsets(df), is_tournament)
|
214 |
+
highest_rated_opponent = make_df_columns_readable(get_highest_rated_opponent(df), is_tournament)
|
215 |
rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
|
216 |
+
match_with_longest_game = make_df_columns_readable(get_match_with_longest_game(df, is_tournament), is_tournament)
|
217 |
opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
|
218 |
opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)
|
219 |
|
|
|
237 |
analyze_btn_title = "Analyze"
|
238 |
gr.Markdown(f"""# USATT rating analyzer
|
239 |
Analyze [USA table tennis](https://www.teamusa.org/usa-table-tennis) tournament and league results.
|
|
|
240 |
## Downloading match results
|
241 |
1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth) to your USATT account.
|
242 |
2. Find the *active* player you wish to analyze (e.g., [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
|
243 |
3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
|
|
|
244 |
## Usage
|
245 |
1. Simply add your tournament/league match history CSV file and click the "{analyze_btn_title}" button.
|
246 |
""")
|
|
|
255 |
num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
|
256 |
with gr.Column():
|
257 |
num_matches_box = gr.Textbox(lines=1, label="Number of matches played")
|
258 |
+
|
259 |
with gr.Row():
|
260 |
with gr.Column():
|
261 |
rating_over_time_plot = gr.Plot(show_label=False)
|
262 |
with gr.Column():
|
263 |
matches_per_comp_plot = gr.Plot(show_label=False)
|
264 |
+
|
265 |
with gr.Row():
|
266 |
with gr.Column():
|
267 |
opponent_names_plot = gr.Plot(label="Opponent names")
|
|
|
271 |
with gr.Row():
|
272 |
with gr.Column():
|
273 |
most_frequent_opponents_gdf = gr.Dataframe(label="Most frequent opponents", max_rows=5)
|
274 |
+
best_wins_gdf = gr.Dataframe(label="Best wins (matches won sorted by opponent post-competition rating)",
|
275 |
max_rows=5)
|
276 |
biggest_upsets_gdf = gr.Dataframe(label="Biggest upsets (matches won sorted by rating - opponent post-competition rating)",
|
277 |
max_rows=5)
|
|
|
302 |
opponent_rating_dist_over_time_plot,
|
303 |
]
|
304 |
|
|
|
305 |
btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)
|
306 |
|
307 |
if __name__ == "__main__":
|