usatt-rating-analyzer / match_parser.py
lschlessinger's picture
add ema and fix bugs
7f24c35
raw
history blame
14 kB
import logging
from pathlib import Path
from typing import Optional, Tuple
import matplotlib.pyplot as plt
import pandas as pd
import plotly.graph_objects as go
import requests
import seaborn as sns
from bs4 import BeautifulSoup
from wordcloud import WordCloud
from util import get_max_abs_int, snake_case_to_human_readable, int_csv_to_list
def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
columns = {
"Rating": "rating",
"Result": "result",
"Scores": "scores",
"Opponent": "opponent",
"OpponentRating": "opponent_rating",
}
if is_tournament:
columns.update({
"TournamentStartDate": "tournament_start_date",
"TournamentEndDate": "tournament_end_date",
" Touranament": "tournament",
})
else:
columns.update({
"EventDate": "event_date",
"LeagueName": "league_name"
})
return df.rename(columns=columns)
def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
if is_tournament:
df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
df["tournament"] = df["tournament"].astype('category')
else:
df["event_date"] = pd.to_datetime(df["event_date"])
df["league_name"] = df["league_name"].astype('string')
df["rating"] = df["rating"].astype('int')
df["result"] = df["result"].astype('category')
df["scores"] = df["scores"].astype('string')
df["opponent"] = df["opponent"].astype('category')
df["opponent_rating"] = df["opponent_rating"].astype('int')
return df
def make_df_columns_readable(df: Optional[pd.DataFrame], is_tournament: bool) -> Optional[pd.DataFrame]:
"""Make a data frame's columns human-readable."""
if df is None:
return None
nat_to_none = lambda x: None if x == "NaT" else x
if is_tournament:
if "tournament_start_date" in df.columns and "tournament_end_date" in df.columns:
df['tournament_start_date'] = pd.to_datetime(df['tournament_start_date'])
df['tournament_end_date'] = pd.to_datetime(df['tournament_end_date'])
df['tournament_start_date'] = df['tournament_start_date'].dt.date.astype(str).apply(nat_to_none)
df['tournament_end_date'] = df['tournament_end_date'].dt.date.astype(str).apply(nat_to_none)
def create_date(tournament_start_date, tournament_end_date):
missing_start_date = tournament_start_date is None
missing_end_date = tournament_end_date is None
if not missing_start_date and not missing_end_date:
if tournament_start_date is not tournament_end_date:
return ' - '.join((tournament_start_date, tournament_end_date))
else:
return tournament_start_date
else:
return tournament_start_date if missing_end_date else tournament_end_date
df["date"] = df.apply(lambda row: create_date(row['tournament_start_date'], row['tournament_end_date']), axis=1)
df = df.drop(columns=["tournament_start_date", "tournament_end_date"])
# Move date to the front.
columns = list(df.columns)
columns.insert(0, columns.pop(columns.index("date")))
df = df.loc[:, columns]
else:
if "event_date" in df.columns:
df['event_date'] = pd.to_datetime(df['event_date'])
df['event_date'] = df['event_date'].dt.date.astype(str).apply(nat_to_none)
df = df.rename(columns={"league_name": "league"})
df = df.rename(columns=lambda c: snake_case_to_human_readable(c))
return df
def _check_match_type(match_type: str) -> str:
allowed_match_types = {"tournament", "league"}
if match_type not in allowed_match_types:
raise ValueError(
f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
return match_type
def fetch_player_name(profile_id: int) -> str:
"""Fetch a player name from theUSATT website.
note: the profile ID is NOT the USATT number.
"""
url = f"https://usatt.simplycompete.com/userAccount/up/{profile_id}"
logging.info(f"Fetching player name from {url}")
page = requests.get(url)
soup = BeautifulSoup(page.content, "html.parser")
profile_elt = soup.find("div", class_="profile-header")
return profile_elt.find(class_="title").text.strip()
def get_player_name(file_stem: str) -> str:
profile_id = int(file_stem.split(" ")[0].replace("_", "").split("matches")[-1])
return fetch_player_name(profile_id)
def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
key_name = "tournament_end_date" if is_tournament else "event_date"
return df[key_name].nunique()
def get_first_competition_year(df: pd.DataFrame, is_tournament: bool) -> int:
key_name = "tournament_end_date" if is_tournament else "event_date"
return df[key_name].min().year
def get_num_active_years(df: pd.DataFrame, is_tournament: bool) -> int:
key_name = "tournament_end_date" if is_tournament else "event_date"
return df[key_name].dt.year.nunique()
def get_current_rating(df: pd.DataFrame) -> int:
return df.rating.iloc[0]
def get_max_rating(df: pd.DataFrame) -> int:
return df.rating.max()
def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
fig = plt.figure()
plt.title('Matches per competition')
sns.histplot(df.groupby('tournament' if is_tournament else "event_date", observed=False).size())
plt.xlabel('Number of matches in competition')
return fig
def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
fig = plt.figure()
key_name = "tournament" if is_tournament else "league_name"
wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
return fig
def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
fig = plt.figure()
wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
return fig
def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool, span: int = 60):
df['ema'] = df['rating'].ewm(span=span, adjust=False).mean()
fig = go.Figure()
# Raw rating over time trace
x_key_name = "tournament_end_date" if is_tournament else "event_date"
fig.add_trace(go.Scatter(x=df[x_key_name],
y=df["rating"],
name='Rating',
mode='lines+markers',
line=dict( width=0.9),
marker=dict(size=4))),
# EMA trace
fig.add_trace(go.Scatter(x=df[x_key_name],
y=df["ema"],
mode='lines',
name='Rating EMA',
visible='legendonly',
line=dict(width=1.5, dash='dot')))
fig.update_layout(
title='Rating over time',
xaxis_title='Competition date',
yaxis_title='Rating',
showlegend=True,
template="plotly_white",
)
return fig
def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
if not is_tournament:
return None
df_non_null = df.loc[~df.scores.isna()]
return df_non_null.iloc[[df_non_null.scores.apply(get_max_abs_int).argmax()]]
def get_win_loss_record_str(group_df) -> str:
if len(group_df) > 0:
win_loss_counts = group_df.value_counts()
n_wins = win_loss_counts.Won if hasattr(win_loss_counts, "Won") else 0
n_losses = win_loss_counts.Lost if hasattr(win_loss_counts, "Lost") else 0
else:
n_wins = 0
n_losses = 0
return f"{n_wins}, {n_losses}"
def get_most_frequent_opponents(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
df_with_opponents = df.loc[df.opponent != "-, -"]
most_common_opponents_df = df_with_opponents.groupby('opponent', observed=False).agg({"result": [get_win_loss_record_str, "size"]})
most_common_opponents_df.columns = most_common_opponents_df.columns.get_level_values(1)
most_common_opponents_df.rename({"get_win_loss_record_str": "Win/loss record", "size": "Number of matches"}, axis=1,
inplace=True)
most_common_opponents_df["Opponent"] = most_common_opponents_df.index
return most_common_opponents_df.sort_values("Number of matches", ascending=False)[
["Opponent", "Number of matches", "Win/loss record"]].head(top_n)
def get_best_wins(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
"""Get the top-n wins sorted by opponent rating."""
return df.loc[df.result == 'Won'].sort_values("opponent_rating", ascending=False).head(top_n)
def get_biggest_upsets(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
"""Get the top-n wins sorted by rating difference."""
df['rating_difference'] = df['opponent_rating'] - df['rating']
return df.loc[df.result == 'Won'].sort_values("rating_difference", ascending=False).head(top_n)
def get_worst_recent_losses(df: pd.DataFrame,
is_tournament: bool,
top_k_losses: int = 5,
top_n_comps: int = 5) -> pd.DataFrame:
"""Get the top-k most recent worst losses from the top-n most recent competitions."""
x_key_name = "tournament_end_date" if is_tournament else "event_date"
most_recent_competition_dates =df.groupby(x_key_name).first().reset_index().nlargest(top_n_comps,
columns=x_key_name)[x_key_name]
df_recent = df.loc[df[x_key_name].isin(most_recent_competition_dates)]
return df_recent.loc[df_recent.result == 'Lost'].sort_values("opponent_rating", ascending=True).head(top_k_losses)
def get_best_competitions(df: pd.DataFrame, is_tournament: bool, top_n: int = 5) -> pd.DataFrame:
# First add pre-competition ratings
x_key_name = "tournament_end_date" if is_tournament else "event_date"
grouped = df.groupby(x_key_name)
# We incorrectly fill the first pre-competition rating to the first rating so that
# the top-k rating differences make sense.
fill_value = df.iloc[-1].rating
pre_comp_ratings_by_group = grouped['rating'].first().shift(periods=1, fill_value=fill_value)
def assign_pre_comp_rating(group_df):
"""Assign a pre-competition rating to a given group."""
comp_end_date = group_df[x_key_name].unique()[0]
group_df['pre-competition_rating'] = pre_comp_ratings_by_group.loc[comp_end_date]
return group_df
df = grouped.apply(lambda x: assign_pre_comp_rating(x))
df['rating_increase'] = df['rating'] - df['pre-competition_rating']
df.reset_index(drop=True, inplace=True)
best_competition_dates = df.groupby(x_key_name)["rating_increase"].first().nlargest(top_n).index
tournament_df = df.loc[df[x_key_name].isin(best_competition_dates)].groupby(
[x_key_name]).first().sort_values(by='rating_increase', ascending=False).reset_index()
cols = []
if is_tournament:
cols += ['tournament_start_date', 'tournament_end_date', 'tournament']
else:
cols += ["event_date", "league_name"]
cols += ['rating_increase', 'pre-competition_rating', 'rating']
tournament_df = tournament_df[cols]
tournament_df = tournament_df.rename(columns={"rating": "post-competition_rating"})
return tournament_df
def get_highest_rated_opponent(df: pd.DataFrame) -> pd.DataFrame:
return df.iloc[df.opponent_rating.idxmax()].to_frame().transpose()
def get_opponent_rating_distr_fig(df: pd.DataFrame):
fig = plt.figure()
plt.title('Opponent rating distribution')
sns.histplot(data=df, x="opponent_rating", hue='result')
plt.xlabel('Opponent rating')
return fig
def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
fig, ax = plt.subplots(figsize=(12, 8))
plt.title(f'Opponent rating distribution over time')
x_key_name = "tournament_end_date" if is_tournament else "event_date"
sns.violinplot(data=df,
x=df[x_key_name].dt.year,
y="opponent_rating",
hue="result",
split=True,
inner='points',
cut=1,
ax=ax)
plt.xticks(rotation=30)
plt.xlabel('Competition year')
plt.ylabel('Opponent rating')
return fig
def get_total_match_points(score_str: str) -> int:
single_game_scores = int_csv_to_list(score_str)
total_points = 0
for single_game_score in single_game_scores:
abs_gscore = abs(single_game_score)
if abs_gscore < 10:
total_points += abs_gscore + 11
else:
total_points += 2 * abs_gscore + 2
return total_points
def get_longest_match(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
"""Get the longest match, where longest is defined as the most number of points played."""
if not is_tournament:
return None
df_non_null = df.loc[~df.scores.isna()]
df_non_null["total_points"] = df_non_null.scores.apply(get_total_match_points)
return df_non_null.iloc[[df_non_null["total_points"].argmax()]]
def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
match_type = _check_match_type(file_path.name.split('_')[0])
is_tournament = match_type == "tournament"
df = pd.read_csv(file_path)
df = _rename_columns(df, is_tournament)
df = _fix_dtypes(df, is_tournament)
logging.info(f"Loaded match CSV {file_path}.")
return df, is_tournament