Spaces:
Running
Running
from fastai.vision.all import * | |
import gradio as gr | |
import pathlib | |
# Load the trained model | |
learn = load_learner('export.pkl') | |
# Categories for the prediction | |
categories = ('black', 'grizzly', 'teddy') | |
# Image classification function | |
def classify_image(img): | |
img = PILImage.create(img) # Convert image to fastai's PILImage format | |
img = img.resize((192, 192)) | |
pred, idx, probs = learn.predict(img) | |
return dict(zip(categories, map(float,probs))) | |
# Define the Gradio interface | |
image = gr.Image() # Define the image input with shape | |
label = gr.Label() # Output label for the classification result | |
examples = ['grizzly.jpg', 'black.jpg', 'teddy.jpg', 'dunno.jpg'] | |
# Create the interface | |
inft = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) | |
# Launch the interface | |
inft.launch(inline=False) | |