File size: 1,174 Bytes
698a00c
d84e01b
 
698a00c
d84e01b
698a00c
 
d84e01b
698a00c
d84e01b
 
 
 
 
698a00c
d84e01b
 
 
 
 
 
 
698a00c
 
 
d84e01b
 
698a00c
d84e01b
 
698a00c
d84e01b
698a00c
 
 
d84e01b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch

# Define model name
MODEL_NAME = "SeaLLMs/SeaLLM-7B-v2.5"

# Load the model and tokenizer with optimized settings
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    torch_dtype=torch.float16,  # Use float16 for GPU optimization
    device_map="auto"          # Automatically assign to available GPUs
)

# Chatbot function
def chatbot(prompt):
    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    # Generate response
    outputs = model.generate(inputs.input_ids, max_new_tokens=150, temperature=0.7)
    # Decode and return response
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Gradio Interface
iface = gr.Interface(
    fn=chatbot,
    inputs=gr.Textbox(label="Ask me anything:", lines=3, placeholder="Type your message here..."),
    outputs=gr.Textbox(label="Response"),
    title="SeaLLM Chatbot",
    description="A chatbot powered by SeaLLM-7B-v2.5 for text generation.",
)

if __name__ == "__main__":
    iface.launch()